

 Navigation

 	
 index

 	
 next |

 	Distlib 0.2.3 documentation

Welcome to distlib’s documentation!

Welcome to the documentation for distlib, a library of packaging
functionality which is intended to be used as the basis for third-party
packaging tools. Using a common layer will improve interoperability and
consistency of user experience across those tools which use the library.

Please note: this documentation is a work in progress.

	Overview
	Distlib evolved out of packaging

	What was the problem with packaging?

	How Distlib can help

	How you can help

	Main features

	Python version and platform compatibility

	Project status

	Change log for distlib
	0.2.4 (future)

	0.2.3

	0.2.2

	0.2.1

	0.2.0

	0.1.9

	0.1.8

	0.1.7

	0.1.6

	0.1.5

	0.1.4

	0.1.3

	0.1.2

	0.1.1

	0.1.0

	Next steps

	Tutorial
	Installation

	Testing
	PYPI availability

	First steps
	Using the database API
	Distribution paths

	Querying a path for distributions

	Including legacy distributions in the search results

	Distribution properties

	Exporting things from Distributions

	Distribution dependencies

	Using the locators API
	Overview

	Under the hood

	Using the index API
	Overview

	Registering a project

	Uploading a source distribution

	Uploading binary distributions

	Signing a distribution

	Downloading files

	Verifying signatures

	Uploading documentation

	Authentication

	Verifying HTTPS connections

	Saving a default configuration

	Searching PyPI

	Using the metadata and markers APIs
	Instantiating metadata

	Reading metadata from files and streams

	Writing metadata to paths and streams

	Using markers

	Using the resource API
	Access to resources in the file system

	Access to resources in the .zip files

	Iterating over resources

	Using the scripts API
	Specifying scripts to install

	Wrapping callables with scripts

	Specifying a custom executable for shebangs

	Generating variants of a script

	Avoiding overwriting existing scripts

	Generating windowed scripts on Windows

	Using the version API
	Overview

	Matching versions against constraints

	Using the wheel API
	Building wheels

	Customising tags during build

	Specifying a wheel’s version

	Installing from wheels

	Verifying wheels

	Modifying wheels

	Mounting wheels

	Using vanilla pip to build wheels for existing distributions on PyPI

	Using the manifest API
	The include directive

	The exclude directive

	The global-include directive

	The global-exclude directive

	The recursive-include directive

	The recursive-exclude directive

	The graft directive

	The prune directive

	Next steps

	Distlib’s design
	The locators API
	The problem we’re trying to solve

	A minimal solution
	Locating distributions

	Finding dependencies

	The index API
	The problem we’re trying to solve

	A minimal solution

	The resources API
	The problem we’re trying to solve

	A minimal solution

	Dealing with the requirement for access via file system files

	The scripts API
	The problem we’re trying to solve

	A minimal solution
	Flag formats

	The version API
	The problem we’re trying to solve

	A minimal solution
	Versions

	Matchers

	Version schemes

	The wheel API
	The problem we’re trying to solve

	A minimal solution

	Next steps

	API Reference
	The distlib.database package
	Classes

	The distlib.resources package
	Attributes

	Functions

	Classes

	The distlib.scripts package
	Classes

	The distlib.locators package
	Classes

	Functions

	Variables

	The distlib.index package
	Classes

	The distlib.util package
	Classes

	Functions

	The distlib.wheel package
	Attributes

	Classes

	Functions

	Attributes

	Next steps

	Migrating from older APIs
	The pkg_resources resource API
	Basic resource access

	Resource extraction

	Provider interface

	The pkg_resources entry point API

Please enable JavaScript to view the comments powered by Disqus.

Comments powered by Disqus

 Copyright 2012-2016, The Python Software Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Distlib 0.2.3 documentation

Overview

Start here for all things distlib.

Distlib evolved out of packaging

Distlib is a library which implements low-level functions that relate to
packaging and distribution of Python software. It consists in part of
the functions in the packaging Python package, which was intended to be
released as part of Python 3.3, but was removed shortly before Python
3.3 entered beta testing.

What was the problem with packaging?

The packaging software just wasn’t ready for inclusion in the Python
standard library. The amount of work needed to get it into the desired
state was too great, given the number of people able to work on the project,
the time they could devote to it, and the Python 3.3 release schedule.

The approach taken by packaging was seen to be a good one: to ensure
interoperability and consistency between different tools in the packaging
space by defining standards for data formats through PEPs, and to do away
with the ad hoc nature of installation encouraged by the distutils
approach of using executable Python code in setup.py. Where custom
code was needed, it could be provided in a standardised way using
installation hooks.

While some very good work was done in defining PEPs to codify some of the
best practices, packaging suffered from some drawbacks, too:

	Not all the PEPs may have been functionally complete, because some important
use cases were not considered – for example, built (binary) distributions for
Windows.

	It continued the command-based design of distutils, which had resulted
in distutils being difficult to extend in a consistent, easily
understood, and maintainable fashion.

	Some important features required by distribution authors were not considered
– for example:

	Access to data files stored in Python packages.

	Support for plug-in extension points.

	Support for native script execution on Windows.

These features are supported by third-party tools (like setuptools /
Distribute) using pkg_resources, entry points and console
scripts.

	There were a lot of rough edges in the packaging implementation, both
in terms of bugs and in terms of incompletely implemented features. This
can be seen (with the benefit of hindsight) as due to the goals being set too
ambitiously; the project developers bit off more than they could chew.

How Distlib can help

The idea behind Distlib is expressed in this python-dev mailing-list post [http://mail.python.org/pipermail/python-dev/2012-September/121716.html],
though a different name was suggested for the library. Basically, Distlib
contains the implementations of the packaging PEPs and other low-level
features which relate to packaging, distribution, and deployment of Python
software. If Distlib can be made genuinely useful, then it is possible for
third-party packaging tools to transition to using it. Their developers and
users then benefit from standardised implementation of low-level functions,
time saved by not having to reinvent wheels, and improved interoperability
between tools.

How you can help

If you have some time and the inclination to improve the state of Python
packaging, then you can help by trying out Distlib, raising issues where
you find problems, contributing feedback and/or patches to the
implementation, documentation, and underlying PEPs.

Main features

Distlib currently offers the following features:

	The package distlib.database, which implements a database of installed
distributions, as defined by PEP 376 [https://www.python.org/dev/peps/pep-0376], and distribution dependency graph
logic. Support is also provided for non-installed distributions (i.e.
distributions registered with metadata on an index like PyPI), including
the ability to scan for dependencies and building dependency graphs.

	The package distlib.index, which implements an interface to perform
operations on an index, such as registering a project, uploading a
distribution or uploading documentation. Support is included for verifying
SSL connections (with domain matching) and signing/verifying packages using
GnuPG.

	The package distlib.metadata, which implements distribution metadata as
defined by PEP 426 [https://www.python.org/dev/peps/pep-0426], PEP 345 [https://www.python.org/dev/peps/pep-0345], PEP 314 [https://www.python.org/dev/peps/pep-0314] and PEP 241 [https://www.python.org/dev/peps/pep-0241].

	The package distlib.markers, which implements environment markers as
defined by PEP 426 [https://www.python.org/dev/peps/pep-0426].

	The package distlib.manifest, which implements lists of files used
in packaging source distributions.

	The package distlib.locators, which allows finding distributions, whether
on PyPI (XML-RPC or via the “simple” interface), local directories or some
other source.

	The package distlib.resources, which allows access to data files stored
in Python packages, both in the file system and in .zip files.

	The package distlib.scripts, which allows installing of scripts with
adjustment of shebang lines and support for native Windows executable
launchers.

	The package distlib.version, which implements version specifiers as
defined by PEP 440 [https://www.python.org/dev/peps/pep-0440] / PEP 426 [https://www.python.org/dev/peps/pep-0426], but also support for working with
“legacy” versions (setuptools/distribute) and semantic versions.

	The package distlib.wheel, which provides support for building and
installing from the Wheel format for binary distributions (see PEP 427 [https://www.python.org/dev/peps/pep-0427]).

	The package distlib.util, which contains miscellaneous functions and
classes which are useful in packaging, but which do not fit neatly into
one of the other packages in distlib.* The package implements enhanced
globbing functionality such as the ability to use ** in patterns to
specify recursing into subdirectories.

Python version and platform compatibility

Distlib is intended to be used on any Python version >= 2.6 and is tested on
Python versions 2.6, 2.7, 3.1, 3.2, and 3.3 on Linux, Windows, and Mac OS X (not
all versions are tested on all platforms, but are expected to work correctly).

Project status

The project has reached alpha status in its development: there is a test
suite and it has been exercised on Windows, Ubuntu and Mac OS X. To work with
the project, you can download a release from PyPI [https://pypi.python.org/pypi/distlib/], or clone the source repository or
download a tarball from it.

Coverage results are available at:

http://www.red-dove.com/distlib/coverage/

Continuous integration test results are available at:

https://travis-ci.org/vsajip/distlib/

The source repository for the project is on BitBucket:

https://bitbucket.org/pypa/distlib/

You can leave feedback by raising a new issue on the issue
tracker [https://bitbucket.org/pypa/distlib/issues/new]
(BitBucket registration not necessary, but recommended).

Change log for distlib

0.2.4 (future)

Released: not yet.

0.2.3

Released: 2016-04-30

	util

	Changed get_executable to return Unicode rather than bytes.

	Fixed #84: Allow + character in output script names.

	Relaxed too-stringent test looking for application/json in headers.

	wheel

	sorted the entries in RECORD before writing to file.

	tests

	Numerous test refinements, not detailed further here.

0.2.2

Released: 2016-01-30

	database

	Issue #81: Added support for detecting distributions installed by wheel
versions >= 0.23 (which use metadata.json rather than pydist.json).
Thanks to Te-jé Rodgers for the patch.

	locators

	Updated default PyPI URL to https://pypi.python.org/pypi

	metadata

	Updated to use different formatting for description field for V1.1
metadata.

	Corrected “classifier” to “classifiers” in the mapping for V1.0
metadata.

	scripts

	Improved support for Jython when quoting executables in output scripts.

	util

	Issue #77: Made the internal URL used for extended metadata fetches
configurable via a module attribute.

	Issue #78: Improved entry point parsing to handle leading spaces in
ini-format files.

	docs

	Numerous documentation updates, not detailed further here.

	tests

	renamed environment variable SKIP_SLOW to SKIP_ONLINE in tests and
applied to some more tests.

	Numerous other test refinements, not detailed further here.

0.2.1

Released: 2015-07-07

	locators

	Issue #58: Return a Distribution instance or None from locate().

	Issue #59: Skipped special keys when looking for versions.

	Improved behaviour of PyPIJSONLocator to be analogous to that of other
locators.

	resource

	Added resource iterator functionality.

	scripts

	Issue #71: Updated launchers to decode shebangs using UTF-8. This allows
non-ASCII pathnames to be correctly handled.

	Ensured that the executable written to shebangs is normcased.

	Changed ScriptMaker to work better under Jython.

	util

	Changed the mode setting method to work better under Jython.

	Changed get_executable() to return a normcased value.

	wheel

	Handled multiple-architecture wheel filenames correctly.

	docs

	Numerous documentation updates, not detailed further here.

	tests

	Numerous test refinements, not detailed further here.

0.2.0

Released: 2014-12-17

	compat

	Updated match_hostname to use the latest Python implementation.

	database

	Added download_urls and digests attributes to Distribution.

	locators

	Issue #48: Fixed the problem of adding a tuple containing a set
(unhashable) to a set, by wrapping with frozenset().

	Issue #55: Return multiple download URLs for distributions, if
available.

	manifest

	Issue #57: Remove unhelpful warnings about pattern matches.

	metadata

	Updated to reflect changes to PEP 426.

	resources

	Issue #50: The type of the path needs to be preserved on 2.x.

	scripts

	Updated (inluding launchers) to support providing arguments to
interpreters in shebang lines.

	The launcher sources are now included in the repository and the
source distribution (they are to be found in the PC directory).

	Added frames support in IronPython (patch by Pawel Jasinski).

	Issue #51: encode shebang executable using utf-8 rather than fsencode.

	util

	Removed reference to __PYVENV_LAUNCHER__ when determining executable
for scripts (relevant only on OS X).

	Updated to support changes to PEP 426.

	version

	Updated to reflect changes to versioning proposed in PEP 440.

	wheel

	Updated build() code to respect interpreter arguments in prebuilt
scripts.

	Updated to support changes to PEP 426 / PEP 440.

	docs

	Numerous documentation updates, not detailed further here.

	tests

	Numerous test refinements, not detailed further here.

0.1.9

Released: 2014-05-19

	index

	Added keystore keyword argument to signing and verification
APIs.

	scripts

	Issue #47: Updated binary launchers to fix double-quoting bug where
script executable paths have spaces.

	docs

	Numerous documentation updates, not detailed further here.

	tests

	Numerous test refinements, not detailed further here.

0.1.8

Released: 2014-03-18

	index

	Improved thread-safety in SimpleScrapingLocator (issue #45).

	Replaced absolute imports with relative ones.

	Added search method to PackageIndex.

	locators

	Improved thread-safety in SimpleScrapingLocator (issue #45).

	metadata

	Fixed bug in add_requirements implementation.

	resources

	The Cache class was refactored into distlib.util.Cache
and distlib.resources.ResourceCache classes.

	scripts

	Implement quoting for executables with spaces in them.

	util

	Gained the Cache class, which is also used in distlib.wheel.

	version

	Allowed versions with a single numeric component and a local
version component.

	Adjusted pre-release computation for legacy versions to be the same as
the logic in the setuptools documentation.

	wheel

	Added verify, update, is_compatible and is_mountable
methods to the Wheel class.

	Converted local version separators from ‘-‘ to ‘_’ and back.

	If SOABI not available, used Py_DEBUG, Py_UNICODE_SIZE and
WITH_PYMALLOC to derive the ABI.

	Added “exists” property to Wheel instances.

	Factored out RECORD writing and zip building to separate methods.

	Provided the ability to determine the location where extensions are
extracted, by using the distlib.util.Cache class.

	Avoided using pydist.json in 1.0 wheels (bdist_wheel writes a
non-conforming pydist.json.)

	Improved computation of compatible tags on OS X, and made COMPATIBLE_TAGS
a set.

	_backport/sysconfig

	Replaced an absolute import with a relative one.

	docs

	Numerous documentation updates, not detailed further here.

	tests

	Numerous test refinements, not detailed further here.

0.1.7

Released: 2014-01-16

	metadata

	Added some more fields to the metadata for the index.

	resources

	Use native literal string in cache path.

	Issue #40: Now does path adjustments differently for files and zips.

	scripts

	Improved checking for venvs when generating scripts.

	util

	Issue #39: Fall back to temporary directory for cache if home directory
unavailable.

	wheel

	Use native literal string in cache path.

0.1.6

Released: 2013-12-31

	scripts

	Updated binary launchers because the wrong variant was shipped
with the previous release.

	version

	Added support for local component in PEP 440 versions.

	tests

	Numerous test refinements, not detailed further here.

0.1.5

Released: 2013-12-15

	compat

	Changed source of import for unescape in Python >= 3.4.

	index

	Used dummy_threading when threading isn’t available.

	Used https for default index.

	locators

	Used dummy_threading when threading isn’t available.

	scripts

	Defaulted to setting script mode bits on POSIX.

	Use uncompressed executable launchers, since some anti-virus
products raise false positive errors.

	util

	Used dummy_threading when threading isn’t available.

	docs

	Updated out-of-date links in overview.

	tests

	Used dummy_threading when threading isn’t available.

0.1.4

Released: 2013-10-31

	scripts

	Updated the logic for finding the distlib package using a relative,
rather than absolute method. This fixes a problem for pip, where
distlib is kept in the pip.vendor.distlib package.

	_backport/sysconfig

	The analogous change to that made for scripts, described above.

0.1.3

Released: 2013-10-18

	database

	Added support for PEP 426 JSON metadata (pydist.json).

	Generalised digests to support e.g. SHA256.

	Fixed a bug in parsing legacy metadata from .egg directories.

	Removed duplicated code relating to parsing “provides” fields.

	index

	Changes relating to support for PEP 426 JSON metadata (pydist.json).

	locators

	Changes relating to support for PEP 426 JSON metadata (pydist.json).

	Fixed a bug in scoring download URLs for preference when multiple URLs
are available.

	The legacy scheme is used for the default locator.

	Made changes relating to parsing “provides” fields.

	Generalised digests to support e.g. SHA256.

	If no release version is found for a requirement, prereleases are
now considered even if not explicitly requested.

	markers

	Added support for markers as specified in PEP 426.

	metadata

	Added support for PEP 426 JSON metadata (pydist.json). The old
metadata class is renamed to LegacyMetadata, and the (new)
Metadata class wraps the JSON format (and also the legacy format,
through LegacyMetadata).

	Removed code which was only used if docutils was installed. This code
implemented validation of .rst descriptions, which is not done in
distlib.

	scripts

	Updated the logic for writing executable files to deal as best we can
with files which are already in use and hence cannot be deleted on
Windows.

	Changed the script generation when launchers are used to write a
single executable which wraps a script (whether pre-built or generated)
and includes a manifest to avoid UAC prompts on Windows.

	Changed the interface for script generation options: the make and
make_multiple methods of ScriptMaker now take an optional
options dictionary.

	util

	Added extract_by_key() to copy selected keys from one dict to another.

	Added parse_name_and_version() for use in parsing “provides” fields.

	Made split_filename more flexible.

	version

	Added support for PEP 440 version matching.

	Removed AdaptiveVersion, AdaptiveMatcher etc. as they don’t add
sufficient value to justify keeping them in.

	wheel

	Added wheel_version kwarg to Wheel.build API.

	Changed Wheel.install API (after consultation on distutils-sig).

	Added support for PEP 426 JSON metadata (pydist.json).

	Added lib_only flag to install() method.

	docs

	Numerous documentation updates, not detailed further here.

	tests

	Numerous test refinements, not detailed further here.

0.1.2

Released: 2013-04-30

	compat

	Added BaseConfigurator backport for 2.6.

	database

	Return RECORD path from write_installed_files (or None if dry_run).

	Explicitly return None from write_shared_locations if dry run.

	metadata

	Added missing condition in todict().

	scripts

	Add variants and clobber flag for generation of foo/fooX/foo-X.Y.

	Added .exe manifests for Windows.

	util

	Regularised recording of written files.

	Added Configurator.

	version

	Tidyups, most suggested by Donald Stufft: Made key functions private,
removed _Common class, removed checking for huge version numbers, made
UnsupportedVersionError a ValueError.

	wheel

	Replaced absolute import with relative.

	Handle None return from write_shared_locations correctly.

	Fixed bug in Mounter for extension modules not in sub-packages.

	Made dylib-cache Python version-specific.

	docs

	Numerous documentation updates, not detailed further here.

	tests

	Numerous test refinements, not detailed further here.

	other

	Corrected setup.py to ensure that sysconfig.cfg is included.

0.1.1

Released: 2013-03-22

	database

	Updated requirements logic to use extras and environment markers.

	Made it easier to subclass Distribution and EggInfoDistribution.

	locators

	Added method to clear locator caches.

	Added the ability to skip pre-releases.

	manifest

	Fixed bug which caused side-effect when sorting a manifest.

	metadata

	Updated to handle most 2.0 fields, though PEP 426 is still a draft.

	Added the option to skip unset fields when writing.

	resources

	Made separate subclasses ResourceBase, Resource and ResourceContainer
from Resource. Thanks to Thomas Kluyver for the suggestion and patch.

	scripts

	Fixed bug which prevented writing shebang lines correctly on Windows.

	util

	Made get_cache_base more useful by parametrising the suffix to use.

	Fixed a bug when reading CSV streams from .zip files under 3.x.

	version

	Added is_prerelease property to versions.

	Moved to PEP 426 version formats and sorting.

	wheel

	Fixed CSV stream reading under 3.x and handled UTF-8 in zip entries
correctly.

	Added metadata and info properties, and updated the install method to
return the installed distribution.

	Added mount/unmount functionality.

	Removed compatible_tags() function in favour of COMPATIBLE_TAGS
attribute.

	docs

	Numerous documentation updates, not detailed further here.

	tests

	Numerous test refinements, not detailed further here.

0.1.0

Released: 2013-03-02

	Initial release.

Next steps

You might find it helpful to look at the Tutorial, or the
API Reference.

Please enable JavaScript to view the comments powered by Disqus.

Comments powered by Disqus

 Copyright 2012-2016, The Python Software Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Distlib 0.2.3 documentation

Tutorial

Installation

Distlib is a pure-Python library. You should be able to install it using:

pip install distlib

for installing distlib into a virtualenv or other directory where you have
write permissions. On Posix platforms, you may need to invoke using sudo
if you need to install distlib in a protected location such as your system
Python’s site-packages directory.

Testing

A full test suite is included with distlib. To run it, you’ll need to
download the source distribution, unpack it and run python setup.py test
in the top-level directory of the package. You can of course also run
python setup.py install to install the package (perhaps invoking with
sudo if you need to install to a protected location).

Continuous integration test results are available at:

https://travis-ci.org/vsajip/distlib/

Coverage results are available at:

https://coveralls.io/r/vsajip/distlib

Note that the actual coverage is higher than that shown, because coverage
under Windows is not included in the above coverage figures.

Note that the index tests are configured, by default, to use a local test
server, though they can be configured to run against PyPI itself. This local
test server is not bundled with distlib, but is available from:

https://raw.github.com/vsajip/pypiserver/standalone/pypi-server-standalone.py

This is a slightly modified version of Ralf Schmitt’s pypiserver [https://github.com/schmir/pypiserver]. To use, the script needs to be copied
to the tests folder of the distlib distribution.

If the server script is not available, the tests which use it will be skipped.
Naturally, this will also affect the coverage statistics.

PYPI availability

If PyPI is unavailable or slow, then some of the tests can fail or become
painfully slow. To skip tests that might be sometimes slow, set the
SKIP_SLOW environment variable:

$ SKIP_SLOW=1 python setup.py test

on Posix, or:

C:\> set SKIP_SLOW=1
C:\> python setup.py test

on Windows.

First steps

For now, we just list how to use particular parts of the API as they take
shape.

Using the database API

You can use the distlib.database package to access information about
installed distributions. This information is available through the
following classes:

	DistributionPath, which represents a set of distributions installed
on a path.

	Distribution, which represents an individual distribution,
conforming to recent packaging PEPs (PEP 440 [https://www.python.org/dev/peps/pep-0440], PEP 426 [https://www.python.org/dev/peps/pep-0426], PEP 386 [https://www.python.org/dev/peps/pep-0386],
PEP 376 [https://www.python.org/dev/peps/pep-0376], PEP 345 [https://www.python.org/dev/peps/pep-0345], PEP 314 [https://www.python.org/dev/peps/pep-0314] and PEP 241 [https://www.python.org/dev/peps/pep-0241]).

	EggInfoDistribution, which represents a legacy distribution in
egg format.

Distribution paths

The Distribution and EggInfoDistribution classes are normally
not instantiated directly; rather, they are returned by querying
DistributionPath for distributions. To create a DistributionPath
instance, you can do

>>> from distlib.database import DistributionPath
>>> dist_path = DistributionPath()

Querying a path for distributions

In this most basic form, dist_path will provide access to all non-legacy
distributions on sys.path. To get these distributions, you invoke the
get_distributions() method, which returns an iterable. Let’s try it:

>>> list(dist_path.get_distributions())
[]

This may seem surprising if you’ve just started looking at distlib,
as you won’t have any non-legacy distributions.

Including legacy distributions in the search results

To include distributions created and installed using setuptools or
distribute, you need to create the DistributionPath by specifying an
additional keyword argument, like so:

>>> dist_path = DistributionPath(include_egg=True)

and then you’ll get a less surprising result:

>>> len(list(dist_path.get_distributions()))
77

The exact number returned will be different for you, of course. You can ask
for a particular distribution by name, using the get_distribution()
method:

>>> dist_path.get_distribution('setuptools')
<EggInfoDistribution u'setuptools' 0.6c11 at '/usr/lib/python2.7/dist-packages/setuptools.egg-info'>

If you want to look at a specific path other than sys.path, you specify it
as a positional argument to the DistributionPath constructor:

>>> from pprint import pprint
>>> special_dists = DistributionPath(['tests/fake_dists'], include_egg=True)
>>> pprint([d.name for d in special_dists.get_distributions()])
['babar',
 'choxie',
 'towel-stuff',
 'grammar',
 'truffles',
 'coconuts-aster',
 'nut',
 'bacon',
 'banana',
 'cheese',
 'strawberry']

or, if you leave out egg-based distributions:

>>> special_dists = DistributionPath(['tests/fake_dists'])
>>> pprint([d.name for d in special_dists.get_distributions()])
['babar',
 'choxie',
 'towel-stuff',
 'grammar']

Distribution properties

Once you have a Distribution instance, you can use it to get more
information about the distribution. For example:

	The metadata attribute gives access to the distribution’s metadata
(see Using the metadata and markers APIs for more information).

	The name_and_version attribute shows the name and version in the format
name (X.Y).

	The key attribute holds the distribution’s name in lower-case, as you
generally want to search for distributions without regard to case
sensitivity.

Exporting things from Distributions

Each distribution has a dictionary of exports. The exports dictionary is
functionally equivalent to “entry points” in distribute / setuptools.

The keys to the dictionary are just names in a hierarchical namespace
delineated with periods (like Python packages, so we’ll refer to them as
pkgnames in the following discussion). The keys indicate categories of
information which the distribution’s author wishes to export. In each such
category, a distribution may publish one or more entries.

The entries can be used for many purposes, and can point to callable code or
data. A common purpose is for publishing callables in the distribution which
adhere to a particular protocol.

To give a concrete example, the Babel [http://babel.edgewall.org/] library
for internationalisation support provides a mechanism for extracting, from a
variety of sources, message text to be internationalised. Babel itself provides
functionality to extract messages from e.g. Python and JavaScript source code,
but helpfully offers a mechanism whereby providers of other sources of
message text can provide their own extractors. It does this by providing a
category 'babel.extractors', under which other software can register
extractors for their sources. The Jinja2 [http://jinja2.pocoo.org/] template
engine, for example, makes use of this to provide a message extractor for
Jinja2 templates. Babel itself registers its own extractors under the same
category, so that a unified view of all extractors in a given Python
environment can be obtained, and Babel’s extractors are treated by other parts
of Babel in exactly the same way as extractors from third parties.

Any installed distribution can offer up values for any category, and a set of
distributions (such as the set of installed distributions on sys.path)
conceptually has an aggregation of these values.

The values associated with a category are a list of strings with the format:

name = prefix [":" suffix] ["[" flags "]"]

where name, prefix, and suffix are pkgnames. suffix and
flags are optional and flags follow the description in
Flag formats.

Any installed distribution can offer up values for any category, and
a set of distributions (such as the set of installed distributions on
sys.path) conceptually has an aggregation of these values.

For callables, the prefix is the package or module name which contains the
callable, suffix is the path to the callable in the module, and flags can
be used for any purpose determined by the distribution author (for example, the
extras feature in distribute / setuptools).

This entry format is used in the distlib.scripts package for installing
scripts based on Python callables.

Note

In PEP 426 [https://www.python.org/dev/peps/pep-0426], the flags value is limited to a single flag
representing an extra (optional set of dependencies, for optional features
of a distribution).

Distribution dependencies

You can use the distlib.locators package to locate the dependencies that
a distribution has. The distlib.database package has code which
allow you to analyse the relationships between a set of distributions:

	make_graph(), which generates a dependency graph from a list of
distributions.

	get_dependent_dists(), which takes a list of distributions and a
specific distribution in that list, and returns the distributions that
are dependent on that specific distribution.

	get_required_dists(), which takes a list of distributions and a
specific distribution in that list, and returns the distributions that
are required by that specific distribution.

The graph returned by make_graph() is an instance of
DependencyGraph.

Using the locators API

Overview

To locate a distribution in an index, we can use the locate() function.
This returns a potentially downloadable distribution (in the sense that it
has a download URL – of course, there are no guarantees that there will
actually be a downloadable resource at that URL). The return value is an
instance of distlib.database.Distribution which can be queried for
any distributions it requires, so that they can also be located if desired.
Here is a basic example:

>>> from distlib.locators import locate
>>> flask = locate('flask')
>>> flask
<Distribution Flask (0.10.1) [https://pypi.python.org/packages/source/F/Flask/Flask-0.10.1.tar.gz]>
>>> dependencies = [locate(r) for r in flask.run_requires]
>>> from pprint import pprint
>>> pprint(dependencies)
[<Distribution Werkzeug (0.9.1) [https://pypi.python.org/packages/source/W/Werkzeug/Werkzeug-0.9.1.tar.gz]>,
 <Distribution Jinja2 (2.7) [https://pypi.python.org/packages/source/J/Jinja2/Jinja2-2.7.tar.gz]>,
 <Distribution itsdangerous (0.21) [https://pypi.python.org/packages/source/i/itsdangerous/itsdangerous-0.21.tar.gz]>]
>>>

The values in the run_requires property are just strings. Here’s another example,
showing a little more detail:

>>> authy = locate('authy')
>>> authy.run_requires
set(['httplib2 (>= 0.7, < 0.8)', 'simplejson'])
>>> authy
<Distribution authy (1.0.0) [http://pypi.python.org/packages/source/a/authy/authy-1.0.0.tar.gz]>
>>> deps = [locate(r) for r in authy.run_requires]
>>> pprint(deps)
[<Distribution httplib2 (0.7.7) [http://pypi.python.org/packages/source/h/httplib2/httplib2-0.7.7.zip]>,
 <Distribution simplejson (3.3.0) [http://pypi.python.org/packages/source/s/simplejson/simplejson-3.3.0.tar.gz]>]
>>>

Note that the constraints on the dependencies were honoured by locate().

Under the hood

Under the hood, locate() uses locators. Locators are a mechanism for
finding distributions from a range of sources. Although the pypi subpackage
has been copied from distutils2 to distlib, there may be benefits in a
higher-level API, and so the distlib.locators package has been created as
an experiment. Locators are objects which locate distributions. A locator
instance’s get_project() method is called, passing in a project name: The
method returns a dictionary containing information about distribution releases
found for that project. The keys of the returned dictionary are versions, and
the values are instances of distlib.database.Distribution.

The following locators are provided:

	DirectoryLocator – this is instantiated with a base directory and
will look for archives in the file system tree under that directory. Name
and version information is inferred from the filenames of archives, and the
amount of information returned about the download is minimal. The locator
searches all subdirectories by default, but can be set to only look in the
specified directory by setting the recursive keyword argument to
False.

	PyPIRPCLocator. – This takes a base URL for the RPC service and
will locate packages using PyPI’s XML-RPC API. This locator is a little slow
(the scraping interface seems to work faster) and case-sensitive. For
example, searching for 'flask' will throw up no results, but you get the
expected results when searching from 'Flask'. This appears to be a
limitation of the underlying XML-RPC API. Note that 20 versions of a
project necessitate 41 network calls (one to get the versions, and
two more for each version – one to get the metadata, and another to get the
downloads information).

	PyPIJSONLocator. – This takes a base URL for the JSON service and
will locate packages using PyPI’s JSON API. This locator is case-sensitive. For
example, searching for 'flask' will throw up no results, but you get the
expected results when searching from 'Flask'. This appears to be a
limitation of the underlying JSON API. Note that unlike the XML-RPC service,
only non-hidden releases will be returned.

	SimpleScrapingLocator – this takes a base URL for the site to
scrape, and locates packages using a similar approach to the
PackageFinder class in pip, or as documented in the setuptools
documentation as the approach used by easy_install.

	DistPathLocator – this takes a DistributionPath instance
and locates installed distributions. This can be used with
AggregatingLocator to satisfy requirements from installed
distributions before looking elsewhere for them.

	JSONLocator – this uses an improved JSON metadata schema and
returns data on all versions of a distribution, including dependencies,
using a single network request.

	AggregatingLocator – this takes a list of other aggregators and
delegates finding projects to them. It can either return the first result
found (i.e. from the first aggregator in the list provided which returns a
non-empty result), or a merged result from all the aggregators in the list.

There is a default locator, available at distlib.locators.default_locator.

The locators package also contains a function,
get_all_distribution_names(), which retrieves the names of all
distributions registered on PyPI:

>>> from distlib.locators import get_all_distribution_names
>>> names = get_all_distribution_names()
>>> len(names)
31905
>>>

This is implemented using the XML-RPC API.

Apart from JSONLocator, none of the locators currently returns enough
metadata to allow dependency resolution to be carried out, but that is a result
of the fact that metadata relating to dependencies are not indexed, and would
require not just downloading the distribution archives and inspection of
contained metadata files, but potentially also introspecting setup.py! This is
the downside of having vital information only available via keyword arguments
to the setup() call: hopefully, a move to fully declarative metadata will
facilitate indexing it and allowing the provision of improved features.

The locators will skip binary distributions other than wheels. (.egg files
are currently treated as binary distributions).

The PyPI locator classes don’t yet support the use of mirrors, but that can be
added in due course – once the basic functionality is working satisfactorily.

Using the index API

You can use the distlib.index package to perform operations relating to a
package index compatible with PyPI. This includes things like registering a
project, uploading a distribution or uploading documentation.

Overview

You access index functionality through an instance of the
PackageIndex class. This is instantiated with the URL of the
repository (which can be omitted if you want to use PyPI itself):

>>> from distlib.index import PackageIndex
>>> index = PackageIndex()
>>> index.url
'http://pypi.python.org/pypi'

To use a local test server, you might do this:

>>> index = PackageIndex('http://localhost:8080/')

Registering a project

Registering a project can be done using a Metadata instance which
holds the index metadata used for registering. A simple example:

>>> from distlib.metadata import Metadata
>>> metadata = Metadata()
>>> metadata.name = 'tatterdemalion'
>>> metadata.version = '0.1'
>>> # other fields omitted
>>> response = index.register(metadata)

The register() method returns an HTTP response, such as might be returned
by a call to urlopen. If an error occurs, a HTTPError will be
raised. Otherwise, the response.code should be 200.

Uploading a source distribution

To upload a source distribution, you need to do the following as a minimum:

>>> metadata = ... # get a populated Metadata instance
>>> response = index.upload_file(metadata, archive_name)

The upload_file() method returns an HTTP response or, in case of error,
raises an HTTPError.

Uploading binary distributions

When uploading binary distributions, you need to specify the file type and
Python version, as in the following example:

>>> response = index.upload_file(metadata, archive_name,
... filetype='bdist_dumb',
... pyversion='2.6')

Signing a distribution

To sign a distribution, you will typically need GnuPG. The default
implementation looks for gpg or gpg2 on the path, but if not available
there, you can can explicitly specify an absbolute path indicating where the
signing program is to be found:

>>> index.gpg = '/path/to/gpg'

Once this is set, you can sign the archive before uploading, as follows:

>>> response = index.upload_file(metadata, archive_name,
... signer='Test User',
... sign_password='secret',
 keystore='/path/to/keys')

As an alternative to passing the keystore with each call, you can specify
that in an instance attribute:

>>> index.gpg_home = '/path/to/keys'

The keystore is a directory which contains the GnuPG key database (files
like pubring.gpg, secring.gpg, and trustdb.gpg).

When you sign a distribution, both the distribution and the signature are
uploaded to the index.

Downloading files

The PackageIndex class contains a utility method which allows you to
download distributions (and other files, such as signatures):

>>> index.download_file(url, destfile, digest=None, reporthook=None)

This is similar in function to urlretrieve() in the standard library.
Provide a digest if you want the call to check that the has digest of the
downloaded file matches a specific value: if not provided, no matching is done.
The value passed can just be a plain string in the case of an MD5 digest or, if
you want to specify the hashing algorithm to use, specify a tuple such as
('sha1', '0123456789abcdef...'). The hashing algorithm must be one that’s
supported by the hashlib [http://docs.python.org/library/hashlib.html#module-hashlib] module.

Benefits to using this method over plain urlretrieve() are:

	It will use the ssl_verifier, if set, to ensure that the download is
coming from where you think it is (see Verifying HTTPS connections).

	It will compute the digest as it downloads, saving you from having to read
the whole of the downloaded file just to compute its digest.

Note that the url you download from doesn’t actually need to be on the index –
in theory, it could be from some other site. Note that if you have an
ssl_verifier set on the index, it will perform its checks according to
whichever url you supply – whether it’s a resource on the index or not.

Verifying signatures

For any archive downloaded from an index, you can retrieve any signature by
just appending .asc to the path portion of the download URL for the
archive, and downloading that. The index class offers a
verify_signature() method for validating a signature. If you have files
‘good.bin’, ‘bad.bin’ which are different from each other, and ‘good.bin.asc’
has the signature for ‘good.bin’, then you can verify signatures like this:

>>> index.verify_signature('good.bin.asc', 'good.bin', '/path/to/keys')
True
>>> index.verify_signature('good.bin.asc', 'bad.bin', '/path/to/keys')
False

The last argument, which is optional, specifies a directory which holds the
GnuPG keys used for verification – the keystore. Instead of specifying the
keystore location in each call, you can specify the location in an instance
attribute:

>>> index.gpg_home = '/path/to/keys'

If you do this, you don’t need to pass the keystore location.

Note that if you don’t have the gpg or gpg2 programs on the path, you
may need to specify the location of the verifier program explicitly:

>>> index.gpg = '/path/to/gpg'

Some caveats about verified signatures

In order to be able to perform signature verification, you’ll have to ensure
that the public keys of whoever signed those distributions are in your key
store. However, having these keys shouldn’t give you a false sense of security;
unless you can be sure that those keys actually belong to the people or
organisations they purport to represent, the signature has no real value, even
if it is verified without error. For you to be able to trust a key, it would
need to be signed by someone you trust, who vouches for it – and this requires
there to be either a signature from a valid certifying authority (e.g. Verisign,
Thawte etc.) or a Web of Trust [http://wikipedia.org/wiki/Web_of_trust] around
the keys that you want to rely on.

An index may itself countersign distributions (so it deals with the keys of
the distribution publishers, but you need only deal with the public signing
key belonging to the index). If you trust the index, you can trust the verified
signature if it’s signed by the index.

Uploading documentation

To upload documentation, you need to specify the metadata and the directory
which is the root of the documentation (typically, if you use Sphinx to
build your documentation, this will be something like
<project>/docs/_build/html):

>>> response = index.upload_documentation(metadata, doc_dir)

The upload_documentation() method returns an HTTP response or, in case of
error, raises an HTTPError. The call will zip up the entire contents
of the passed directory doc_dir and upload the zip file to the index.

Authentication

Operations which update the index (all of the above) will require
authenticated requests. You can specify a username and password to use for
requests sent to the index:

>>> index.username = 'test'
>>> index.password = 'secret'

For your convenience, these will be automatically read from any .pypirc
file which you have; if it contains entries for multiple indexes, a
repository key in .pypirc must match index.url to identify which
username and password are to be read from .pypirc. Note that to ensure
compatibility, distlib uses distutils code to read the .pypirc
configuration. Thus, given the .pypirc file:

[distutils]
index-servers =
 pypi
 test

[pypi]
username: me
password: my_strong_password

[test]
repository: http://localhost:8080/
username: test
password: secret

you would see the following:

>>> index = PackageIndex()
>>> index.username
'me'
>>> index.password
'my_strong_password'
>>> index = PackageIndex('http://localhost:8080/')
>>> index.username
'test'
>>> index.password
'secret'

Verifying HTTPS connections

Although Python has full support for SSL, it does not, by default, verify SSL
connections to servers. That’s because in order to do so, a set of certificates
which certify the identity of the server needs to be provided (see the
relevant Python documentation [http://docs.python.org/3/library/ssl.html#certificates] for details).

Support for verifying SSL connections is provided in distlib through a handler,
distlib.util.HTTPSHandler. To use it, set the ssl_verifier
attribute of the index to a suitably configured instance. For example:

>>> from distlib.util import HTTPSHandler
>>> verifier = HTTPSHandler('/path/to/root/certs.pem')
>>> index.ssl_verifier = verifier

By default, the handler will attempt to match domains, including wildcard
matching. This means that (for example) you access foo.org or
www.foo.org which have a certificate for *.foo.org, the domains will
match. If the domains don’t match, the handler raises a
CertificateError (a subclass of ValueError).

Domain mismatches can, however, happen for valid reasons. Say a hosting server
bar.com hosts www.foo.org, which we are trying to access using SSL. If
the server holds a certificate for www.foo.org, it will present it to the
client, as long as both support Server Name Indication (SNI) [http://wikipedia.org/wiki/Server_Name_Indication]. While distlib
supports SNI where Python supports it, Python 2.x does not include SNI support.
For this or some other reason , you may wish to turn domain matching off. To do
so, instantiate the verifier like this:

>>> verifier = HTTPSHandler('/path/to/root/certs.pem', False)

Ensuring that only HTTPS connections are made

You may want to ensure that traffic is only HTTPS for a particular
interaction with a server – for example:

	Deal with a Man-In-The-Middle proxy server which listens on port 443
but talks HTTP rather than HTTPS

	Deal with situations where an index page obtained via HTTPS contains
links with a scheme of http rather than https.

To do this, instead of using HTTPSHandler as shown above,
use the HTTPSOnlyHandler class instead, which disallows any
HTTP traffic. It’s used in the same way as HTTPSHandler:

>>> from distlib.util import HTTPSOnlyHandler
>>> verifier = HTTPSOnlyHandler('/path/to/root/certs.pem')
>>> index.ssl_verifier = verifier

Note that with this handler, you can’t make any HTTP connections at all -
it will raise URLError if you try.

Getting hold of root certificates

At the time of writing, you can find a file in the appropriate format on the
cURL website [http://curl.haxx.se/docs/caextract.html]. Just download the
cacert.pem file and pass the path to it when instantiating your verifier.

Saving a default configuration

If you don’t have a .pypirc file but want to save one, you can do this by
setting the username and password and calling the save_configuration()
method:

>>> index = PackageIndex()
>>> index.username = 'fred'
>>> index.password = 'flintstone'
>>> index.save_configuration()

This will use distutils code to save a default .pypirc file which
specifies a single index – PyPI – with the specified username and password.

Searching PyPI

You can use the search() method of
PackageIndex
to search for distributions on PyPI:

>>> index = PackageIndex()
>>> from pprint import pprint
>>> pprint(index.search('tatterdema'))
[{'_pypi_ordering': 0,
 'name': 'tatterdemalion',
 'summary': 'A dummy distribution',
 'version': '0.1.0'}]

If a string is specified, just the name is searched for. Alternatively, you
can specify a dictionary of attributes to search for, along with values
to match. For example:

>>> pprint(index.search({'summary': 'dummy'}))
[{'_pypi_ordering': 5,
 'name': 'collective.lorem',
 'summary': 'A package that provides dummy content generation.',
 'version': '0.2.3'},
 {'_pypi_ordering': 7,
 'name': 'collective.loremipsum',
 'summary': 'Creates dummy content with populated Lorem Ipsum.',
 'version': '0.8'},
 {'_pypi_ordering': 1,
 'name': 'cosent.dummypackage',
 'summary': 'A dummy package for buildtools testing',
 'version': '0.4'},
 {'_pypi_ordering': 0,
 'name': 'django-dummyimage',
 'summary': 'Dynamic Dummy Image Generator For Django!',
 'version': '0.1.1'},
 {'_pypi_ordering': 1,
 'name': 'django-plainpasswordhasher',
 'summary': 'Dummy (plain text) password hashing for Django.',
 'version': '0.2'},
 {'_pypi_ordering': 2,
 'name': 'django-plainpasswordhasher',
 'summary': 'Dummy (plain text) password hashing for Django.',
 'version': '0.3'},
 {'_pypi_ordering': 1,
 'name': 'dummycache',
 'summary': 'A dummy in-memory cache for development and testing. (Not recommended for production use.)',
 'version': '0.0.2'},
 {'_pypi_ordering': 0,
 'name': 'dummy-txredis',
 'summary': 'Dummy txRedis client and factory.',
 'version': '0.5'},
 {'_pypi_ordering': 7,
 'name': 'eea.eggmonkeytesttarget',
 'summary': 'A dummy package to test eea.eggmonkey',
 'version': '5.7'},
 {'_pypi_ordering': 8,
 'name': 'invewrapper',
 'summary': 'dummy/transitional package that depends on "pew"',
 'version': '0.1.8'},
 {'_pypi_ordering': 0,
 'name': 'monoprocessing',
 'summary': 'A dummy implementation of multiprocessing.Pool',
 'version': '0.1'},
 {'_pypi_ordering': 0,
 'name': 'myFun',
 'summary': 'This is a dummy function which prints given list data.',
 'version': '1.0.0'},
 {'_pypi_ordering': 0,
 'name': 'ReadableDict-a-dict-without-brackets',
 'summary': 'provides a dummy implementation of a dict without brackets',
 'version': '0.0'},
 {'_pypi_ordering': 4,
 'name': 'setuptools_dummy',
 'summary': 'Setuptools Dummy Filefinder',
 'version': '0.1.0.4'},
 {'_pypi_ordering': 0,
 'name': 'tatterdemalion',
 'summary': 'A dummy distribution',
 'version': '0.1.0'}]

If you specify multiple attributes, then the search returns the intersection
of matches – an and operation:

>>> pprint(index.search({'summary': 'dummy', 'name': 'ta'}))
[{'_pypi_ordering': 7,
 'name': 'eea.eggmonkeytesttarget',
 'summary': 'A dummy package to test eea.eggmonkey',
 'version': '5.7'},
 {'_pypi_ordering': 0,
 'name': 'tatterdemalion',
 'summary': 'A dummy distribution',
 'version': '0.1.0'}]

If you want a union of matches – an or operation – specify a second
argument to the PackageIndex.search() method with the value 'or':

>>> pprint(index.search({'version': '2013.9', 'name': 'pytzp'}, 'or'))
[{'_pypi_ordering': 65,
 'name': 'pytz',
 'summary': 'World timezone definitions, modern and historical',
 'version': '2013.9'},
 {'_pypi_ordering': 2,
 'name': 'pytzpure',
 'summary': 'A pure-Python version of PYTZ (timezones).',
 'version': '0.2.4'}]

The search functionality makes use of PyPI’s XML-RPC interface, so it will only
work for indexes which supply a compatible implementation. The following search
attributes are currently supported:

	name

	version

	stable_version

	author

	author_email

	maintainer

	maintainer_email

	home_page

	license

	summary

	description

	keywords

	platform

	download_url

	classifiers (list of classifier strings)

	project_url

	docs_url (URL of the pythonhosted.org docs if they’ve been supplied)

Using the metadata and markers APIs

The metadata API is exposed through a Metadata class. This class can
read and write metadata files complying with any of the defined versions: 1.0
(PEP 241 [https://www.python.org/dev/peps/pep-0241]), 1.1 (PEP 314 [https://www.python.org/dev/peps/pep-0314]), 1.2 (PEP 345 [https://www.python.org/dev/peps/pep-0345]) and 2.0 (PEP 426 [https://www.python.org/dev/peps/pep-0426]). It
implements methods to parse and write metadata files.

Instantiating metadata

You can simply instantiate a Metadata instance and start populating
it:

>>> from distlib.metadata import Metadata
>>> md = Metadata()
>>> md.name = 'foo'
>>> md.version = '1.0'

An instance so created may not be valid unless it has some minimal properties
which meet certain constraints, as specified in
PEP 426 [http://www.python.org/dev/peps/pep-0426/#core-metadata].

These constraints aren’t applicable to legacy metadata. Therefore, when
creating Metadata instances to deal with such metadata, you can
specify the scheme keyword when creating the instance:

>>> legacy_metadata = Metadata(scheme='legacy')

The term ‘legacy’ is somewhat ambiguous, as it could refer to either the
metadata format (legacy => key-value, non-legacy =< JSON as described in
PEP 426 [https://www.python.org/dev/peps/pep-0426]) or the version specification (legacy => setuptools-compatible,
non-legacy => as described in PEP 440 [https://www.python.org/dev/peps/pep-0440]). In this case, it refers to the
version scheme and not the metadata format.
Legacy metadata is also subject to constraints, but they are less stringent
(for example, the name and version number are less constrained).

Whether dealing with current or legacy metadata. an instance’s validate()
method can be called to ensure that the metadata has no missing or invalid
data. This raises a DistlibException (either MetadataMissingError or
MetadataInvalidError) if the metadata isn’t valid.

You can initialise an instance with a dictionary which conforms to PEP 426 [https://www.python.org/dev/peps/pep-0426]
using the following form:

>>> metadata = Metadata(mapping=a_dictionary)

Reading metadata from files and streams

The Metadata class can be instantiated with the path of the
metadata file. Here’s an example with legacy metadata:

>>> from distlib.metadata import Metadata
>>> metadata = Metadata(path='PKG-INFO')
>>> metadata.name
'CLVault'
>>> metadata.version
'0.5'
>>> metadata.run_requires
['keyring']

Instead of using the path keyword argument to specify a file location, you
can also specify a fileobj keyword argument to specify a file-like object
which contains the data.

Writing metadata to paths and streams

Writing metadata can be done using the write method:

>>> metadata.write(path='/to/my/pydist.json')

You can also specify a file-like object to write to, using the fileobj
keyword argument.

Using markers

Environment markers are implemented in the distlib.markers package
and accessed via a single function, interpret().

See PEP 426 [http://www.python.org/dev/peps/pep-0426/#environment-markers]
for more information about environment markers. The interpret() function
takes a string argument which represents a Boolean expression, and returns
either True or False:

>>> from distlib.markers import interpret
>>> interpret('python_version >= "1.0"')
True

You can pass in a context dictionary which is checked for values before the
environment:

>>> interpret('python_version >= "1.0"', {'python_version': '0.5'})
False

You won’t normally need to work with markers in this way – they are dealt
with by the Metadata and Distribution logic when needed.

Using the resource API

You can use the distlib.resources package to access data stored in Python
packages, whether in the file system or .zip files. Consider a package
which contains data alongside Python code:

foofoo
├── bar
│ ├── bar_resource.bin
│ ├── baz.py
│ └── __init__.py
├── foo_resource.bin
├── __init__.py
└── nested
 └── nested_resource.bin

Access to resources in the file system

You can access these resources like so:

>>> from distlib.resources import finder
>>> f = finder('foofoo')
>>> r = f.find('foo_resource.bin')
>>> r.is_container
False
>>> r.size
10
>>> r.bytes
b'more_data\n'
>>> s = r.as_stream()
>>> s.read()
b'more_data\n'
>>> s.close()
>>> r = f.find('nested')
>>> r.is_container
True
>>> r.resources
{'nested_resource.bin'}
>>> r = f.find('nested/nested_resource.bin')
>>> r.size
12
>>> r.bytes
b'nested data\n'
>>> f = finder('foofoo.bar')
>>> r = f.find('bar_resource.bin')
>>> r.is_container
False
>>> r.bytes
b'data\n'

Access to resources in the .zip files

It works the same way if the package is in a .zip file. Given the zip file
foo.zip:

$ unzip -l foo.zip
Archive: foo.zip
 Length Date Time Name
--------- ---------- ----- ----
 10 2012-09-20 21:34 foo/foo_resource.bin
 8 2012-09-20 21:42 foo/__init__.py
 14 2012-09-20 21:42 foo/bar/baz.py
 8 2012-09-20 21:42 foo/bar/__init__.py
 5 2012-09-20 21:33 foo/bar/bar_resource.bin
--------- -------
 45 5 files

You can access its resources as follows:

>>> import sys
>>> sys.path.append('foo.zip')
>>> from distlib.resources import finder
>>> f = finder('foo')
>>> r = f.find('foo_resource.bin')
>>> r.is_container
False
>>> r.size
10
>>> r.bytes
'more_data\n'

and so on.

Iterating over resources

You can iterate over resources as shown in the following example:

>>> from distlib.resources import finder
>>> f = finder('foofoo')
>>> iterator = f.iterator('')
>>> for r in iterator: print('%-20s %s' % (r.name, r.is_container))
...
 True
foo_resource.bin False
__init__.py False
bar True
bar/bar_resource.bin False
bar/baz.py False
bar/__init__.py False
nested True
nested/nested_resource.bin False

It works with zipped resources, too:

>>> import sys
>>> sys.path.append('foo.zip')
>>> from distlib.resources import finder
>>> f = finder('foo')
>>> iterator = f.iterator('')
>>> for r in iterator: print('%-20s %s' % (r.name, r.is_container))
...
 True
foo_resource.bin False
__init__.py False
bar True
bar/bar_resource.bin False
bar/baz.py False
bar/__init__.py False

Using the scripts API

You can use the distlib.scripts API to install scripts. Installing scripts
is slightly more involved than just copying files:

	You may need to adjust shebang lines in scripts to point to the interpreter
to be used to run scripts. This is important in virtual environments (venvs),
and also in other situations where you may have multiple Python installations
on a single computer.

	On Windows, on systems where the PEP 397 [https://www.python.org/dev/peps/pep-0397] launcher isn’t installed, it is not
easy to ensure that the correct Python interpreter is used for a script. You
may wish to install native Windows executable launchers which run the correct
interpreter, based on a shebang line in the script.

Specifying scripts to install

To install scripts, create a ScriptMaker instance,
giving it
the source and target directories for scripts:

>>> from distlib.scripts import ScriptMaker
>>> maker = ScriptMaker(source_dir, target_dir)

You can then install a script foo.py like this:

>>> maker.make('foo.py')

The string passed to make can take one of the following forms:

	A filename, relative to the source directory for scripts, such as foo.py
or subdir/bar.py.

	A reference to a callable, given in the form:

name = some_package.some_module:some_callable [flags]

where the flags part is optional.

For more information about flags, see Flag formats.

Note that this format is exactly the same as for export entries in a
distribution (see Exporting things from Distributions).

When this form is passed to the ScriptMaker.make() method, a Python
stub script is created with the appropriate shebang line and with code to
load and call the specified callable with no arguments, returning its value
as the return code from the script.

You can pass an optional options dictionary to the make() method.
This is meant to contain options which control script generation. There are
two options currently in use:

gui: This Boolean value, if True, indicates on Windows that a Windows
executable launcher (rather than a launcher which is a console application)
should be used. (This only applies if add_launchers is true.)

interpreter_args: If provided, this should be a list of strings which
are added to the shebang line following the interpreter. If there are values
with spaces, you will need to surround them with double quotes.

Note

Use of this feature may affect portability, since POSIX does not
standardise how these arguments are passed to the interpreter (see
https://en.wikipedia.org/wiki/Shebang_line#Portability for more
information).

For example, you can pass {'gui': True} to generate a windowed script.

Wrapping callables with scripts

Let’s see how wrapping a callable works. Consider the following file:

 $ cat scripts/foo.py
 def main():
 print('Hello from foo')

 def other_main():
 print('Hello again from foo')

we can try wrapping ``main`` and ``other_main`` as callables::

 >>> from distlib.scripts import ScriptMaker
 >>> maker = ScriptMaker('scripts', '/tmp/scratch')
 >>> maker.make_multiple(('foo = foo:main', 'bar = foo:other_main'))
 ['/tmp/scratch/foo', '/tmp/scratch/bar']
 >>>

we can inspect the resulting scripts. First, ``foo``::

 $ ls /tmp/scratch/
 bar foo
 $ cat /tmp/scratch/foo
 #!/usr/bin/python

 if __name__ == '__main__':
 import sys, re

 def _resolve(module, func):
 __import__(module)
 mod = sys.modules[module]
 parts = func.split('.')
 result = getattr(mod, parts.pop(0))
 for p in parts:
 result = getattr(result, p)
 return result

 try:
 sys.argv[0] = re.sub('-script.pyw?$', '', sys.argv[0])

 func = _resolve('foo', 'main')
 rc = func() # None interpreted as 0
 except Exception as e: # only supporting Python >= 2.6
 sys.stderr.write('%s\n' % e)
 rc = 1
 sys.exit(rc)

The other script, bar, is different only in the essentials:

$ diff /tmp/scratch/foo /tmp/scratch/bar
16c16
< func = _resolve('foo', 'main')

> func = _resolve('foo', 'other_main')

Specifying a custom executable for shebangs

You may need to specify a custom executable for shebang lines. To do this, set
the executable attribute of a ScriptMaker instance to the
absolute Unicode path of the executable which you want to be written to the
shebang lines of scripts. If not specified, the executable running the
ScriptMaker code is used. If the value has spaces, you should
surround it with double quotes.

Generating variants of a script

When installing a script foo, it is not uncommon to want to install
version-specific variants such as foo3 or foo-3.2. You can control
exactly which variants of the script get written through the
ScriptMaker instance’s variants attribute. This defaults to
set(('', 'X.Y')), which means that by default a script foo would be
installed as foo and foo-3.2 under Python 3.2. If the value of the
variants attribute were set(('', 'X', 'X.Y')) then the foo script
would be installed as foo, foo3 and foo-3.2 when run under Python
3.2.

Avoiding overwriting existing scripts

In some scenarios, you might overwrite existing scripts when you shouldn’t. For
example, if you use Python 2.7 to install a distribution with script foo in
the user site (see PEP 370 [https://www.python.org/dev/peps/pep-0370]), you will write (on POSIX) scripts
~/.local/bin/foo and ~/.local/bin/foo-2.7. If you then install the same
distribution with Python 3.2, you would write (on POSIX) scripts
~/.local/bin/foo and ~/.local/bin/foo-3.2. However, by overwriting the
~/.local/bin/foo script, you may prevent verification or removal of the 2.7
installation to fail, because the overwritten file may be different (and so
have a different hash from what was computed during the 2.7 installation).

To control overwriting of generated scripts this way, you can use the
clobber attribute of a ScriptMaker instance. This is set to
False by default, which prevents overwriting; to force overwriting, set it
to True.

Generating windowed scripts on Windows

The make() and make_multiple() methods take an optional second
options argument, which can be used to control script generation. If
specified, this should be a dictionary of options. Currently, only the value
for the gui key in the dictionary is inspected: if True, it generates
scripts with .pyw extensions (rather than .py) and, if
add_launchers is specified as True in the ScriptMaker
instance, then (on Windows) a windowed native executable launcher is created
(otherwise, the native executable launcher will be a console application).

Using the version API

Overview

The NormalizedVersion class implements a PEP 426 [https://www.python.org/dev/peps/pep-0426] compatible
version:

>>> from distlib.version import NormalizedVersion
>>> v1 = NormalizedVersion('1.0')
>>> v2 = NormalizedVersion('1.0a1')
>>> v3 = NormalizedVersion('1.0b1')
>>> v4 = NormalizedVersion('1.0c1')
>>> v5 = NormalizedVersion('1.0.post1')
>>>

These sort in the expected order:

>>> v2 < v3 < v4 < v1 < v5
True
>>>

You can’t pass any old thing as a version number:

>>> NormalizedVersion('foo')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "distlib/version.py", line 49, in __init__
 self._parts = parts = self.parse(s)
File "distlib/version.py", line 254, in parse
 def parse(self, s): return normalized_key(s)
File "distlib/version.py", line 199, in normalized_key
 raise UnsupportedVersionError(s)
distlib.version.UnsupportedVersionError: foo
>>>

Matching versions against constraints

The NormalizedMatcher is used to match version constraints against
versions:

>>> from distlib.version import NormalizedMatcher
>>> m = NormalizedMatcher('foo (1.0b1)')
>>> m
NormalizedMatcher('foo (1.0b1)')
>>> [m.match(v) for v in v1, v2, v3, v4, v5]
[False, False, True, False, False]
>>>

Specifying 'foo (1.0b1)' is equivalent to specifying 'foo (==1.0b1)',
i.e. only the exact version is matched. You can also specify inequality
constraints:

>>> m = NormalizedMatcher('foo (<1.0c1)')
>>> [m.match(v) for v in v1, v2, v3, v4, v5]
[False, True, True, False, False]
>>>

and multiple constraints:

>>> m = NormalizedMatcher('foo (>= 1.0b1, <1.0.post1)')
>>> [m.match(v) for v in v1, v2, v3, v4, v5]
[True, False, True, True, False]
>>>

You can do exactly the same thing as above with setuptools/
distribute version numbering (use LegacyVersion and LegacyMatcher)
or with semantic versioning (use SemanticVersion and SemanticMatcher).
However, you can’t mix and match versions of different types:

>>> from distlib.version import SemanticVersion, LegacyVersion
>>> nv = NormalizedVersion('1.0.0')
>>> lv = LegacyVersion('1.0.0')
>>> sv = SemanticVersion('1.0.0')
>>> lv == sv
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "distlib/version.py", line 61, in __eq__
 self._check_compatible(other)
File "distlib/version.py", line 58, in _check_compatible
raise TypeError('cannot compare %r and %r' % (self, other))
TypeError: cannot compare LegacyVersion('1.0.0') and SemanticVersion('1.0.0')
>>> nv == sv
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "distlib/version.py", line 61, in __eq__
 self._check_compatible(other)
File "distlib/version.py", line 58, in _check_compatible
raise TypeError('cannot compare %r and %r' % (self, other))
TypeError: cannot compare NormalizedVersion('1.0.0') and SemanticVersion('1.0.0')
>>>

Using the wheel API

You can use the distlib.wheel package to build and install from files in
the Wheel format, defined in PEP 427 [https://www.python.org/dev/peps/pep-0427].

Building wheels

Building wheels is straightforward:

from distlib.wheel import Wheel

wheel = Wheel()

Set the distribution's identity
wheel.name = 'name_of_distribution'
wheel.version = '0.1'

Indicate where the files to go in the wheel are to be found
paths = {
 'prefix': '/path/to/installation/prefix',
 'purelib': '/path/to/purelib', # only one of purelib
 'platlib': '/path/to/platlib', # or platlib should be set
 'scripts': '/path/to/scripts',
 'headers': '/path/to/headers',
 'data': '/path/to/data',
}

wheel.dirname = '/where/you/want/the/wheel/to/go'
Now build
wheel.build(paths)

If the 'data', 'headers' and 'scripts' keys are absent, or point to
paths which don’t exist, nothing will be added to the wheel for these
categories. The 'prefix' key and one of 'purelib' or 'platlib'
must be provided, and the paths referenced should exist.

Customising tags during build

By default, the build() method will use default tags depending on whether
or not the build is a pure-Python build:

	For a pure-Python build, the pyver will be set to pyXY where XY
is the version of the building Python. The abi tag will be none and
the arch tag will be any.

	For a build which is not pure-Python (i.e. contains C code), the pyver
will be set to e.g. cpXY, and the abi and arch tags will be
set according to the building Python.

If you want to override these default tags, you can pass a tags parameter
to the build() method which has the tags you want to declare. For
example, for a pure build where we know that the code in the wheel will be
compatible with the major version of the building Python:

from wheel import PYVER
tags = {
 'pyver': [PYVER[:-1], PYVER],
}
wheel.build(paths, tags)

This would set the pyver tags to be pyX.pyXY where X and Y
relate to the building Python. You can similarly pass values using the abi
and arch keys in the tags dictionary.

Specifying a wheel’s version

You can also specify a particular “Wheel-Version” to be written to the wheel
metadata of a wheel you’re building. Simply pass a (major, minor) tuple in
the wheel_version keyword argument to build(). If not
specified, the most recent version supported is written.

Installing from wheels

Installing from wheels is similarly straightforward. You just need to indicate
where you want the files in the wheel to be installed:

from distlib.wheel import Wheel
from distlib.scripts import ScriptMaker

wheel = Wheel('/path/to/my_dist-0.1-py32-none-any.whl')

Indicate where the files in the wheel are to be installed to.
All the keys should point to writable paths.
paths = {
 'prefix': '/path/to/installation/prefix',
 'purelib': '/path/to/purelib',
 'platlib': '/path/to/platlib',
 'scripts': '/path/to/scripts',
 'headers': '/path/to/headers',
 'data': '/path/to/data',
}

maker = ScriptMaker(None, None)
You can specify a custom executable in script shebang lines, whether
or not to install native executable launchers, whether to do a dry run
etc. by setting attributes on the maker, wither when creating it or
subsequently.

Now install. The method accepts optional keyword arguments:
#
- A ``warner`` argument which, if specified, should be a callable that
will be called with (software_wheel_version, file_wheel_version) if
they differ. They will both be in the form (major_ver, minor_ver).
#
- A ``lib_only`` argument which indicates that only the library portion
of the wheel should be installed - no scripts, header files or
non-package data.

wheel.install(paths, maker)

Only one of the purelib or platlib paths will actually be written to
(assuming that they are different, which isn’t often the case). Which one it is
depends on whether the wheel metadata declares that the wheel contains pure
Python code.

Verifying wheels

You can verify that a wheel’s contents match the declared contents in the
wheel’s RECORD entry, by calling the verify() method. This will
raise a DistlibException if a size or digest mismatch is found.

Modifying wheels

Note

In an ideal world one would not need to modify wheels, but in the
short term there might be a need to do so (for example, to add dependency
information which is missing). If you are working with wheels on your own
projects, you shouldn’t use the method described here, as you will have
full control of the wheels you build yourself. However, if you are working
with third party wheels which you don’t build yourself but you need to
modify in some way, then the approach described below might be useful.

You can update existing wheels with distlib by calling the
update() method of a wheel. This is called as follows:

modified = wheel.update(modifier, dest_dir, **kwargs)

where the modifier is a callable which you specify, and kwargs are
options you want to pass to it (currently, the update() method passes
kwargs unchanged to the modifier). The dest_dir argument indicates
where you want any new wheel to be written - it is optional and if not
specified, the existing wheel will be overwritten.

The update() method extracts the entire contents of the wheel to
a temporary location, and then calls modifier as follows:

modified = modifier(path_map, **kwargs)

where path_map is a dictionary mapping archive paths to the location
of the corresponding extracted archive entry, and kwargs is whatever
was passed to the update method. If the modifier returns True,
a new wheel is built from the (possibly updated) contents of path_map
and its path name. The passed path_map will contain all of the wheel’s
entries other than the RECORD entry (which will be recreated if a new
wheel is built).

For example, if you wanted to add numpy as a dependency in a scipy
wheel, you might do something like this:

def add_numpy_dependency(path_map, **kwargs):
 mdpath = path_map['scipy-0.11.dist-info/pydist.json']
 md = Metadata(path=mdpath)
 md.add_requirements(['numpy'])
 md.write(path=mdpath)
 return True

wheel = Wheel('scipy-0.11-py27-abi3-linux_x86_64.whl')
wheel.update(add_numpy_dependency)

In the above example, the modifier doesn’t actually use kwargs,
but you could pass useful information which can be used to control the
modifier’s operation. For example, you might make the function work with
other distributions than scipy, or other versions of scipy:

def add_numpy_dependency(path_map, **kwargs):
 name = kwargs.get('name', 'scipy')
 version = kwargs.get('version', '0.11')
 key = '%s-%s.dist-info/pydist.json' % (name, version)
 mdpath = path_map[key]
 md = Metadata(path=mdpath)
 md.add_requirements(['numpy'])
 md.write(path=mdpath)
 return True

Mounting wheels

One of Python’s perhaps under-used features is zipimport, which gives the
ability to import Python source from .zip files. Since wheels are .zip
files, they can sometimes be used to provide functionality without needing to
be installed. Whereas .zip files contain no convention for indicating
compatibility with a particular Python, wheels do contain this compatibility
information. Thus, it is possible to check if a wheel can be directly imported
from, and the wheel support in distlib allows you to take advantage of this
using the mount() and unmount() methods. When you mount a wheel,
its absolute path name is added to sys.path, allowing the Python code in it
to be imported. (A DistlibException is raised if the wheel isn’t
compatible with the Python which calls the mount() method.)

The mount() method takes an optional keyword parameter append which
defaults to False, meaning the a mounted wheel’s pathname is added to the
beginning of sys.path. If you pass True, the pathname is appended to
sys.path.

The mount() method goes further than just enabling Python imports – any
C extensions in the wheel are also made available for import. For this to be
possible, the wheel has to be built with additional metadata about extensions
– a JSON file called EXTENSIONS which serialises an extension mapping
dictionary. This maps extension module names to the names in the wheel of the
shared libraries which implement those modules.

Running unmount() on the wheel removes its absolute pathname from
sys.path and makes its C extensions, if any, also unavailable for import.

Note

The C extension mounting functionality may not work in all cases,
though it should work in a useful subset of cases. Use with care. Note that
extension information is currently only available in wheels built using
distil – for wheels built using e.g. pip, this note will not apply,
because C extensions will never be available for import.

	There might be subtle differences in binary compatibility between the
extension and the running Python, because the compatibility tag framework
currently does not capture all the relevant ABI information. This is a
situation which can be expected to improve over time.

	If the extension uses custom dynamically linked libraries which are
bundled with the extension, it may not be found by the dynamic loading
machinery, for reasons that are platform-dependent. In such cases, you
should have a good understanding of how dynamic loading works on your
platforms, before taking advantage of this feature.

Using vanilla pip to build wheels for existing distributions on PyPI

Although work is afoot to add wheel support to pip, you don’t need this
to build wheels for existing PyPI distributions if you use distlib. The
following script shows how you can use an unpatched, vanilla pip to
build wheels:

#!/usr/bin/env python
-*- coding: utf-8 -*-
#
Copyright (C) 2013 Vinay Sajip. License: MIT
#

import logging
import optparse # for 2.6
import os
import re
import shutil
import subprocess
import sys
import tempfile

logger = logging.getLogger('wheeler')

from distlib.compat import configparser, filter
from distlib.database import DistributionPath, Distribution, make_graph
from distlib.locators import (JSONLocator, SimpleScrapingLocator,
 AggregatingLocator, DependencyFinder)
from distlib.manifest import Manifest
from distlib.metadata import Metadata
from distlib.util import parse_requirement, get_package_data
from distlib.wheel import Wheel

EGG_INFO_RE = re.compile(r'(-py\d\.\d)?\.egg-info', re.I)

INSTALLED_DISTS = DistributionPath(include_egg=True)

def get_requirements(data):
 lines = []
 for line in data.splitlines():
 line = line.strip()
 if not line or line[0] == '#':
 continue
 lines.append(line)
 reqts = []
 extras = {}
 result = {'install': reqts, 'extras': extras}
 for line in lines:
 if line[0] != '[':
 reqts.append(line)
 else:
 i = line.find(']', 1)
 if i < 0:
 raise ValueError('unrecognised line: %r' % line)
 extra = line[1:i]
 extras[extra] = reqts = []
 return result

def convert_egg_info(libdir, prefix, options):
 files = os.listdir(libdir)
 ei = list(filter(lambda d: d.endswith('.egg-info'), files))[0]
 olddn = os.path.join(libdir, ei)
 di = EGG_INFO_RE.sub('.dist-info', ei)
 newdn = os.path.join(libdir, di)
 os.rename(olddn, newdn)
 if options.compatible:
 renames = {}
 else:
 renames = {
 'entry_points.txt': 'EXPORTS',
 }
 excludes = set([
 'SOURCES.txt', # of no interest in/post WHEEL
 'installed-files.txt', # replaced by RECORD, so not needed
 'requires.txt', # added to METADATA, so not needed
 'PKG-INFO', # replaced by METADATA
 'not-zip-safe', # not applicable
])
 files = os.listdir(newdn)
 metadata = mdname = reqts = None
 for oldfn in files:
 pn = os.path.join(newdn, oldfn)
 if oldfn in renames:
 os.rename(pn, os.path.join(newdn, renames[oldfn]))
 else:
 if oldfn == 'requires.txt':
 with open(pn, 'r') as f:
 reqts = get_requirements(f.read())
 elif oldfn == 'PKG-INFO':
 metadata = Metadata(path=pn)
 pd = get_package_data(metadata.name, metadata.version)
 metadata = Metadata(mapping=pd['index-metadata'])
 mdname = os.path.join(newdn, 'pydist.json')
 if oldfn in excludes or not options.compatible:
 os.remove(pn)
 if metadata:
 # Use Metadata 1.2 or later
 metadata.provides += ['%s (%s)' % (metadata.name,
 metadata.version)]
 # Update if not set up by get_package_data
 if reqts and not metadata.run_requires:
 metadata.dependencies = reqts
 metadata.write(path=mdname)
 manifest = Manifest(os.path.dirname(libdir))
 manifest.findall()
 paths = manifest.allfiles
 dp = DistributionPath([libdir])
 dist = next(dp.get_distributions())
 dist.write_installed_files(paths, prefix)

def install_dist(distname, workdir, options):
 pfx = '--install-option='
 purelib = pfx + '--install-purelib=%s/purelib' % workdir
 platlib = pfx + '--install-platlib=%s/platlib' % workdir
 headers = pfx + '--install-headers=%s/headers' % workdir
 scripts = pfx + '--install-scripts=%s/scripts' % workdir
 data = pfx + '--install-data=%s/data' % workdir
 # Use the pip adjacent to sys.executable, if any (for virtualenvs)
 d = os.path.dirname(sys.executable)
 files = filter(lambda o: o in ('pip', 'pip.exe'), os.listdir(d))
 if not files:
 prog = 'pip'
 else:
 prog = os.path.join(d, next(files))
 cmd = [prog, 'install',
 '--no-deps', '--quiet',
 '--index-url', 'http://pypi.python.org/simple/',
 '--timeout', '3', '--default-timeout', '3',
 purelib, platlib, headers, scripts, data, distname]
 result = {
 'scripts': os.path.join(workdir, 'scripts'),
 'headers': os.path.join(workdir, 'headers'),
 'data': os.path.join(workdir, 'data'),
 }
 print('Pipping %s ...' % distname)
 p = subprocess.Popen(cmd, shell=False, stdout=sys.stdout,
 stderr=subprocess.STDOUT)
 stdout, _ = p.communicate()
 if p.returncode:
 raise ValueError('pip failed to install %s:\n%s' % (distname, stdout))
 for dn in ('purelib', 'platlib'):
 libdir = os.path.join(workdir, dn)
 if os.path.isdir(libdir):
 result[dn] = libdir
 break
 convert_egg_info(libdir, workdir, options)
 dp = DistributionPath([libdir])
 dist = next(dp.get_distributions())
 md = dist.metadata
 result['name'] = md.name
 result['version'] = md.version
 return result

def build_wheel(distname, options):
 result = None
 r = parse_requirement(distname)
 if not r:
 print('Invalid requirement: %r' % distname)
 else:
 dist = INSTALLED_DISTS.get_distribution(r.name)
 if dist:
 print('Can\'t build a wheel from already-installed '
 'distribution %s' % dist.name_and_version)
 else:
 workdir = tempfile.mkdtemp() # where the Wheel input files will live
 try:
 paths = install_dist(distname, workdir, options)
 paths['prefix'] = workdir
 wheel = Wheel()
 wheel.name = paths.pop('name')
 wheel.version = paths.pop('version')
 wheel.dirname = options.destdir
 wheel.build(paths)
 result = wheel
 finally:
 shutil.rmtree(workdir)
 return result

def main(args=None):
 parser = optparse.OptionParser(usage='%prog [options] requirement [requirement ...]')
 parser.add_option('-d', '--dest', dest='destdir', metavar='DESTDIR',
 default=os.getcwd(), help='Where you want the wheels '
 'to be put.')
 parser.add_option('-n', '--no-deps', dest='deps', default=True,
 action='store_false',
 help='Don\'t build dependent wheels.')
 options, args = parser.parse_args(args)
 options.compatible = True # may add flag to turn off later
 if not args:
 parser.print_usage()
 else:
 # Check if pip is available; no point in continuing, otherwise
 try:
 with open(os.devnull, 'w') as f:
 p = subprocess.call(['pip', '--version'], stdout=f, stderr=subprocess.STDOUT)
 except Exception:
 p = 1
 if p:
 print('pip appears not to be available. Wheeler needs pip to '
 'build wheels.')
 return 1
 if options.deps:
 # collect all the requirements, including dependencies
 u = 'http://pypi.python.org/simple/'
 locator = AggregatingLocator(JSONLocator(),
 SimpleScrapingLocator(u, timeout=3.0),
 scheme='legacy')
 finder = DependencyFinder(locator)
 wanted = set()
 for arg in args:
 r = parse_requirement(arg)
 if not r.constraints:
 dname = r.name
 else:
 dname = '%s (%s)' % (r.name, ', '.join(r.constraints))
 print('Finding the dependencies of %s ...' % arg)
 dists, problems = finder.find(dname)
 if problems:
 print('There were some problems resolving dependencies '
 'for %r.' % arg)
 for _, info in problems:
 print(' Unsatisfied requirement %r' % info)
 wanted |= dists
 want_ordered = True # set to False to skip ordering
 if not want_ordered:
 wanted = list(wanted)
 else:
 graph = make_graph(wanted, scheme=locator.scheme)
 slist, cycle = graph.topological_sort()
 if cycle:
 # Now sort the remainder on dependency count.
 cycle = sorted(cycle, reverse=True,
 key=lambda d: len(graph.reverse_list[d]))
 wanted = slist + cycle

 # get rid of any installed distributions from the list
 for w in list(wanted):
 dist = INSTALLED_DISTS.get_distribution(w.name)
 if dist or w.name in ('setuptools', 'distribute'):
 wanted.remove(w)
 s = w.name_and_version
 print('Skipped already-installed distribution %s' % s)

 # converted wanted list to pip-style requirements
 args = ['%s==%s' % (dist.name, dist.version) for dist in wanted]

 # Now go build
 built = []
 for arg in args:
 wheel = build_wheel(arg, options)
 if wheel:
 built.append(wheel)
 if built:
 if options.destdir == os.getcwd():
 dest = ''
 else:
 dest = ' in %s' % options.destdir
 print('The following wheels were built%s:' % dest)
 for wheel in built:
 print(' %s' % wheel.filename)

if __name__ == '__main__':
 logging.basicConfig(format='%(levelname)-8s %(name)s %(message)s',
 filename='wheeler.log', filemode='w')
 try:
 rc = main()
 except Exception as e:
 print('Failed - sorry! Reason: %s\nPlease check the log.' % e)
 logger.exception('Failed.')
 rc = 1
 sys.exit(rc)

This script, wheeler.py, is also available here [https://gist.github.com/vsajip/4988471]. Note that by default, it downloads
dependencies of any distribution you specify and builds separate wheels for
each distribution. It’s smart about not repeating work if dependencies are
common across multiple distributions you specify:

$ python wheeler.py sphinx flask
Finding the dependencies of sphinx ...
Finding the dependencies of flask ...
Pipping Jinja2==2.6 ...
Pipping docutils==0.10 ...
Pipping Pygments==1.6 ...
Pipping Werkzeug==0.8.3 ...
Pipping Sphinx==1.1.3 ...
Pipping Flask==0.9 ...
The following wheels were built:
 Jinja2-2.6-py27-none-any.whl
 docutils-0.10-py27-none-any.whl
 Pygments-1.6-py27-none-any.whl
 Werkzeug-0.8.3-py27-none-any.whl
 Sphinx-1.1.3-py27-none-any.whl
 Flask-0.9-py27-none-any.whl

Note that the common dependency – Jinja2 – was only built once.

You can opt to not build dependent wheels by specifying --no-deps on the
command line.

Note that the script also currently uses an http: URL for PyPI – this may need
to change to an https: URL in the future.

Note

It can’t be used to build wheels from existing distributions, as pip will
either refuse to install to custom locations (because it views a distribution
as already installed), or will try to upgrade and thus uninstall the existing
distribution, even though installation is requested to a custom location (and
uninstallation is not desirable). For best results, run it in a fresh venv:

$ my_env/bin/python wheeler.py some_dist

It should use the venv’s pip, if one is found.

Using the manifest API

You can use the distlib.manifest API to construct lists of files when
creating distributions. This functionality is an improved version of the
equivalent functionality in distutils, where it was not a public API.

You can create instances of the Manifest class to work with a set
of files rooted in a particular directory:

>>> from distlib.manifest import Manifest
>>> manifest = Manifest('/path/to/my/sources')

This sets the base attribute to the passed in root directory. You can
add one or multiple files using names relative to the base directory:

>>> manifest.add('abc')
>>> manifest.add_many(['def', 'ghi'])

As a result of the above two statements, the manifest will consist of
'/path/to/my/sources/abc', '/path/to/my/sources/def' and
'/path/to/my/sources/ghi'. No check is made regarding the existence of
these files.

You can get all the files below the base directory of the manifest:

>>> manifest.findall()

This will populate the allfiles attribute of manifest with
a list of all files in the directory tree rooted at the base. However,
the manifest is still empty:

>>> manifest.files
>>> set()

You can populate the manifest – the files attribute – by running
a number of directives, using the process_directive() method. Each
directive will either add files from allfiles to files, or
remove files from allfiles if they were added by a previous directive.
A directive is a string which must have a specific syntax: malformed lines will
result in a DistlibException being raised. The following directives
are available: they are compatible with the syntax of MANIFEST.in files
processed by distutils.

Consider the following directory tree:

testsrc/
├── keep
│ └── keep.txt
├── LICENSE
├── README.txt
└── subdir
 ├── lose
 │ └── lose.txt
 ├── somedata.txt
 └── subsubdir
 └── somedata.bin

This will be used to illustrate how the directives work, in the following
sections.

The include directive

This takes the form of the word include (case-sensitive) followed by a
number of file-name patterns (as used in MANIFEST.in in distutils). All
files in allfiles` matching the patterns (considered relative to the
base directory) are added to files. For example:

>>> manifest.process_directive('include R*.txt LIC* keep/*.txt')

This will add README.txt, LICENSE and keep/keep.txt to the
manifest.

The exclude directive

This takes the form of the word exclude (case-sensitive) followed by a
number of file-name patterns (as used in MANIFEST.in in distutils). All
files in files` matching the patterns (considered relative to the
base directory) are removed from files. For example:

>>> manifest.process_directive('exclude LIC*')

This will remove ‘LICENSE’ from the manifest, as it was added in the section
above.

The global-include directive

This works just like include, but will add matching files at all levels of
the directory tree:

>>> manifest.process_directive('global-include *.txt')

This will add subdir/somedata.txt and subdir/lose/lose.txt from the
manifest.

The global-exclude directive

This works just like exclude, but will remove matching files at all levels
of the directory tree:

>>> manifest.process_directive('global-exclude l*.txt')

This will remove subdir/lose/lose.txt from the manifest.

The recursive-include directive

This directive takes a directory name (relative to the base) and a set of
patterns. The patterns are used as in global-include, but only for files
under the specified directory:

>>> manifest.process_directive('recursive-include subdir l*.txt')

This will add subdir/lose/lose.txt back to the manifest.

The recursive-exclude directive

This works like recursive-include, but excludes matching files under the
specified directory if they were already added by a previous directive:

>>> manifest.process_directive('recursive-exclude subdir lose*')

This will remove subdir/lose/lose.txt from the manifest again.

The graft directive

This directive takes the name of a directory (relative to the base) and copies
all the names under it from allfiles to files.

The prune directive

This directive takes the name of a directory (relative to the base) and removes
all the names under it from files.

Next steps

You might find it helpful to look at information about
Distlib’s design – or peruse the API Reference.

Please enable JavaScript to view the comments powered by Disqus.

Comments powered by Disqus

 Copyright 2012-2016, The Python Software Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Distlib 0.2.3 documentation

Distlib’s design

This is the section containing some discussion of how distlib‘s design was
arrived at, as and when time permits.

The locators API

This section describes the design of the distlib API relating to accessing
distribution metadata, whether stored locally or in indexes like PyPI.

The problem we’re trying to solve

People who use distributions need to locate, download and install them.
Distributions can be found in a number of places, such as:

	An Internet index such as The Python Packages Index (PyPI) [http://pypi.python.org], or a mirror thereof.

	Other Internet resources, such as the developer’s website, or a source
code repository such as GitHub, BitBucket, Google Code or similar.

	File systems, whether local to one computer or shared between several.

	Distributions which have already been installed, and are available in the
sys.path of a running Python interpreter.

When we’re looking for distributions, we don’t always know exactly what we
want: often, we just want the latest version, but it’s not uncommon to want
a specific older version, or perhaps the most recent version that meets some
constraints on the version. Since we need to be concerned with matching
versions, we need to consider the version schemes in use (see
The version API).

It’s useful to separate the notion of a project from a distribution: The
project is the version-independent part of the distribution, i.e. it’s
described by the name of the distribution and encompasses all released
distributions which use that name.

We often don’t just want a single distribution, either: a common requirement,
when installing a distribution, is to locate all distributions that it relies
on, which aren’t already installed. So we need a dependency finder, which
itself needs to locate depended-upon distributions, and recursively search for
dependencies until all that are available have been found.

We may need to distinguish between different types of dependencies:

	Post-installation dependencies. These are needed by the distribution after it
has been installed, and is in use.

	Build dependencies. These are needed for building and/or installing the
distribution, but are not needed by the distribution itself after
installation.

	Test dependencies. These are only needed for testing the distribution, but
are not needed by the distribution itself after installation.

When testing a distribution, we need all three types of dependencies. When
installing a distribution, we need the first two, but not the third.

A minimal solution

Locating distributions

It seems that the simplest API to locate a distribution would look like
locate(requirement), where requirement is a string giving the
distribution name and optional version constraints. Given that we know that
distributions can be found in different places, it’s best to consider a
Locator class which has a locate() method with a corresponding
signature, with subclasses for each of the different types of location that
distributions inhabit. It’s also reasonable to provide a default locator in
a module attribute default_locator, and a module-level locate()
function which calls the locate() method on the default locator.

Since we’ll often need to locate all the versions of a project before picking
one, we can imagine that a locator would need a get_project() method for
fetching all versions of a project; and since we will be likely to want to use
caching, we can assume there will be a _get_project() method to do the
actual work of fetching the version data, which the higher-level
get_project() will call (and probably cache). So our locator base class
will look something like this:

class Locator(object):
 """
 Locate distributions.
 """

 def __init__(self, version_scheme='default'):
 """
 Initialise a locator with the specified version scheme.
 """

 def locate(self, requirement):
 """
 Locate the highest-version distribution which satisfies
 the constraints in ``requirement``, and return a
 ``Distribution`` instance if found, or else ``None``.
 """

 def get_project(self, name):
 """
 Return all known distributions for a project named ``name``,
 returning a dictionary mapping version to ``Distribution``
 instance, or an empty dictionary if nothing was found.
 Use _get_project to do the actual work, and cache the results for
 future use.
 """

 def _get_project(self, name):
 """
 Return all known distributions for a project named ``name``,
 returning a dictionary mapping version to ``Distribution``
 instance, or an empty dictionary if nothing was found.
 """

When attempting to locate(), it would be useful to pass requirement
information to get_project() / _get_project(). This can be done in
a matcher attribute which is normally None but set to a
distlib.version.Matcher instance when a locate() call is in
progress.

Finding dependencies

A dependency finder will depend on a locator to locate dependencies. A simple
approach will be to consider a DependencyFinder class which takes a
locator as a constructor argument. It might look something like this:

class DependencyFinder(object):
 """
 Locate dependencies for distributions.
 """

 def __init__(self, locator):
 """
 Initialise an instance, using the specified locator
 to locate distributions.
 """

 def find(self, requirement, meta_extras=None, prereleases=False):
 """
 Find a distribution matching requirement and all distributions
 it depends on. Use the ``meta_extras`` argument to determine
 whether distributions used only for build, test etc. should be
 included in the results. Allow ``requirement`` to be either a
 :class:`Distribution` instance or a string expressing a
 requirement. If ``prereleases`` is True, treat pre-releases as
 normal releases; otherwise only return pre-releases if they're
 all that's available.

 Return a set of :class:`Distribution` instances and a set of
 problems.

 The distributions returned should be such that they have the
 :attr:`required` attribute set to ``True`` if they were
 from the ``requirement`` passed to ``find()``, and they have the
 :attr:`build_time_dependency` attribute set to ``True`` unless they
 are post-installation dependencies of the ``requirement``.

 The problems should be a tuple consisting of the string
 ``'unsatisfied'`` and the requirement which couldn't be satisfied
 by any distribution known to the locator.
 """

The index API

This section describes the design of the distlib API relating to performing
certain operations on Python package indexes like PyPI. Note that this API
does not support finding distributions - the locators API is used for
that.

The problem we’re trying to solve

Operations on a package index that are commonly performed by distribution
developers are:

	Register projects on the index.

	Upload distributions relating to projects on the index, with support for
signed distributions.

	Upload documentation relating to projects.

Less common operations are:

	Find a list of hosts which mirror the index.

	Save a default .pypirc file with default username and password to use.

A minimal solution

The distutils approach was to have several separate command classes called
register, upload and upload_doc, where really all that was needed
was some methods. That’s the approach distlib takes, by implementing a
PackageIndex class with register(), upload_file() and
upload_documentation() methods. The PackageIndex class contains
no user interface code whatsoever: that’s assumed to be the domain of the
packaging tool. The packaging tool is expected to get the required information
from a user using whatever means the developers of that tool deem to be the
most appropriate; the required attributes are then set on the
PackageIndex instance. (Examples of this kind of information: user
name, password, whether the user wants to save a default configuration, where
the signing program and its keys live.)

The minimal interface to provide the required functionality thus looks like
this:

class PackageIndex(object):
 def __init__(self, url=None, mirror_host=None):
 """
 Initialise an instance using a specific index URL, and
 a DNS name for a mirror host which can be used to
 determine available mirror hosts for the index.
 """

 def save_configuration(self):
 """
 Save the username and password attributes of this
 instance in a default .pypirc file.
 """
 def register(self, metadata):
 """
 Register a project on the index, using the specified metadata.
 """

 def upload_file(self, metadata, filename, signer=None,
 sign_password=None, filetype='sdist',
 pyversion='source'):
 """
 Upload a distribution file to the index using the
 specified metadata to identify it, with options
 for signing and for binary distributions which are
 specific to Python versions.
 """

 def upload_documentation(self, metadata, doc_dir):
 """
 Upload documentation files in a specified directory
 using the specified metadata to identify it, after
 archiving the directory contents into a .zip file.
 """

The following additional attributes can be identified on PackageIndex
instances:

	username - the username to use for authentication.

	password - the password to use for authentication.

	mirrors (read-only) - a list of hostnames of known mirrors.

The resources API

This section describes the design of the distlib API relating to accessing
‘resources’, which is a convenient label for data files associated with Python
packages.

The problem we’re trying to solve

Developers often have a need to co-locate data files with their Python
packages. Examples of these might be:

	Templates, commonly used in web applications

	Translated messages used in internationalisation/localisation

The stdlib does not provide a uniform API to access these resources. A common
approach is to use __file__ like this:

base = os.path.dirname(__file__)
data_filename = os.path.join(base, 'data.bin')
with open(data_filename, 'rb') as f:
 # read the data from f

However, this approach fails if the package is deployed in a .zip file.

To consider how to provide a minimal uniform API to access resources in Python
packages, we’ll assume that the requirements are as follows:

	All resources are regarded as binary. The consuming application is expected to
know how to convert resources to text, where appropriate.

	All resources are read-only.

	It should be possible to access resources either as streams, or as their
entire data as a byte-string.

	Resources will have a unique, identifying name which is text. Resources will
be hierarchical and named using filesystem-like paths using ‘/’ as a
separator. The library will be responsible for converting resource names
to the names of the underlying representations (e.g. encoding of file names
corresponding to resource names).

	Some resources are containers of other resources, some are not. For
example, a resource nested/nested_resource.bin in a package would not
contain other resources, but implies the existence of a resource
nested, which contains nested_resource.bin.

	Resources can only be associated with packages, not with modules. That’s
because with peer modules a.py and b.py, there’s no obvious location
for data associated only with a: both a and b are in the same
directory. With a package, there’s no ambiguity, as a package is associated
with a specific directory, and no other package can be associated with that
directory.

	Support should be provided for access to data deployed in the file system or
in packages contained in .zip files, and third parties should be able to
extend the facilities to work with other storage formats which support import
of Python packages.

	It should be possible to access the contents of any resource through a
file on the file system. This is to cater for any external APIs which need to
access the resource data as files (examples would be a shared library for
linking using dlopen() on POSIX, or any APIs which need access to
resource data via OS-level file handles rather than Python streams).

A minimal solution

We know that we will have to deal with resources, so it seems natural that
there would be a Resource class in the solution. From the requirements, we
can see that a Resource would have the following:

	A name property identifying the resource.

	A as_stream method allowing access to the resource data as a binary
stream. This is not a property, because a new stream is returned each time
this method is called. The returned stream should be closed by the caller.

	A bytes property returning the entire contents of the resource as a byte
string.

	A size property indicating the size of the resource (in bytes).

	An is_container property indicating whether the resource is a container
of other resources.

	A resources property returning the names of resources contained within
the resource.

The Resource class would be the logical place to perform sanity checks
which relate to all resources. For example:

	It doesn’t make sense to ask for the bytes or size properties or call
the as_stream method of a container resource.

	It doesn’t make sense to ask for the resources property of a resource
which is not a container.

It seems reasonable to raise exceptions for incorrect property or method
accesses.

We know that we need to support resource access in the file system as well as
.zip files, and to support other sources of storage which might be used to
import Python packages. Since import and loading of Python packages happens
through PEP 302 [https://www.python.org/dev/peps/pep-0302] importers and loaders, we can deduce that the mechanism used
to find resources in a package will be closely tied to the loader for that
package.

We could consider an API for finding resources in a package like this:

def find_resource(pkg, resource_name):
 # return a Resource instance for the resource

and then use it like this:

r1 = find_resource(pkg, 'foo')
r2 = find_resource(pkg, 'bar')

However, we’ll often have situations where we will want to get multiple
resources from a package, and in certain applications we might want to
implement caching or other processing of resources before returning them.
The above API doesn’t facilitate this, so let’s consider delegating the finding
of resources in a package to a finder for that package. Once we get a finder,
we can hang on to it and ask it to find multiple resources. Finders
can be extended to provide whatever caching and preprocessing an application
might need.

To get a finder for a package, let’s assume there’s a finder function:

def finder(pkg):
 # return a finder for the specified package

We can use it like this:

f = finder(pkg)
r1 = f.find('foo')
r2 = f.find('bar')

The finder function knows what kind of finder to return for a particular
package through the use of a registry. Given a package, finder can
determine the loader for that package, and based on the type of loader, it can
instantiate the right kind of finder. The registry maps loader types to
callables that return finders. The callable is called with a single
argument – the Python module object for the package.

Given that we have finders in the design, we can identify
ResourceFinder and ZipResourceFinder classes for the two import
systems we’re going to support. We’ll make ResourceFinder a concrete
class rather than an interface - it’ll implement getting resources from
packages stored in the file system. ZipResourceFinder will be a
subclass of ResourceFinder.

Since there is no loader for file system packages when the C-based import
system is used, the registry will come with the following mappings:

	type(None) -> ResourceFinder

	_frozen_importlib.SourceFileLoader -> ``ResourceFinder

	zipimport.zipimporter -> ZipResourceFinder

Users of the API can add new or override existing mappings using the following
function:

def register_finder(loader, finder_maker):
 # register ``finder_maker`` to make finders for packages with a loader
 # of the same type as ``loader``.

Typically, the finder_maker will be a class like ResourceFinder or
ZipResourceFinder, but it can be any callable which takes the Python module
object for a package and returns a finder.

Let’s consider in more detail what finders look like and how they interact with
the Resource class. We’ll keep the Resource class minimal; API users never
instantiate Resource directly, but call a finder’s find method to
return a Resource instance. A finder could return an instance of a
Resource subclass if really needed, though it shouldn’t be necessary in
most cases. If a finder can’t find a resource, it should return None.

The Resource constructor will look like this:

def __init__(self, finder, name):
 self.finder = finder
 self.name = name
 # other initialisation, not specified

and delegate as much work as possible to its finder. That way, new import
loader types can be supported just by implementing a suitable
XXXResourceFinder for that loader type.

What a finder needs to do can be exemplified by the following skeleton for
ResourceFinder:

class ResourceFinder(object):
 def __init__(self, module):
 "Initialise finder for the specified package"

 def find(self, resource_name):
 "Find and return a ``Resource`` instance or ``None``"

 def is_container(self, resource):
 "Return whether resource is a container"

 def get_bytes(self, resource):
 "Return the resource's data as bytes"

 def get_size(self, resource):
 "Return the size of the resource's data in bytes"

 def get_stream(self, resource):
 "Return the resource's data as a binary stream"

 def get_resources(self, resource):
 """
 Return the resources contained in this resource as a set of
 (relative) resource names
 """

Dealing with the requirement for access via file system files

To cater for the requirement that the contents of some resources be made
available via a file on the file system, we’ll assume a simple caching
solution that saves any such resources to a local file system cache, and
returns the filename of the resource in the cache. We need to divide the
work between the finder and the cache. We’ll deliver the cache function
through a Cache class, which will have the following methods:

	A constructor which takes an optional base directory for the cache. If
none is provided, we’ll construct a base directory of the form:

<rootdir>/.distlib/resource-cache

where <rootdir> is the user’s home directory. On Windows, if the
environment specifies a variable named LOCALAPPDATA, its value
will be used as <rootdir> – otherwise, the user’s home directory
will be used.

	A get() method which takes a Resource and returns a file system
filename, such that the contents of that named file will be the contents
of the resource.

	An is_stale() method which takes a Resource and its corresponding
file system filename, and returns whether the file system file is stale
when compared with the resource. Knowing that cache invalidation is hard,
the default implementation just returns True.

	A prefix_to_dir() method which converts a prefix to a directory name.
We’ll assume that for the cache, a resource path can be divided into two
parts: the prefix and the subpath. For resources in a .zip file, the
prefix would be the pathname of the archive, while the subpath would be the
path inside the archive. For a file system resource, since it is already in
the file system, the prefix would be None and the subpath would be the
absolute path name of the resource. The prefix_to_dir() method’s job
is to convert a prefix (if not None) to a subdirectory in the cache
that holds the cached files for all resources with that prefix. We’ll
delegate the determination of a resource’s prefix and subpath to its finder,
using a get_cache_info() method on finders, which takes a Resource
and returns a (prefix, subpath) tuple.

The default implementation will use os.splitdrive() to see if there’s
a Windows drive, if present, and convert its ':' to '---'. The rest
of the prefix will be converted by replacing '/' by '--', and
appending '.cache' to the result.

The cache will be activated when the file_path property of a Resource
is accessed. This will be a cached property, and will call the cache’s
get() method to obtain the file system path.

The scripts API

This section describes the design of the distlib API relating to installing
scripts.

The problem we’re trying to solve

Installing scripts is slightly more involved than simply copying files from
source to target, for the following reasons:

	On POSIX systems, scripts need to be made executable. To cater for scenarios
where there are multiple Python versions installed on a computer, scripts
need to have their shebang lines adjusted to point to the correct
interpreter. This requirement is commonly found when virtual environments
(venvs) are in use, but also in other multiple-interpreter scenarios.

	On Windows systems, which don’t support shebang lines natively, some
alternate means of finding the correct interpreter need to be provided.
Following the acceptance and implementation of PEP 397, a shebang-
interpreting launcher will be available in Python 3.3 and later and a
standalone version of it for use with earlier Python versions is also
available. However, where this can’t be used, an alternative approach
using executable launchers installed with the scripts may be necessary.
(That is the approach taken by setuptools.)
Windows also has two types of launchers - console applications and
Windows applications. The appropriate launcher needs to be used for
scripts.

	Some scripts are effectively just callable code in a Python package,
with boilerplate for importing that code, calling it and returning
its return value as the script’s return code. It would be useful to
have the boilerplate standardised, so that developers need just specify
which callables to expose as scripts, and under what names, using e.g. a
name = callable syntax. (This is the approach taken by setuptools
for the popular console_scripts feature).

A minimal solution

Script handling in distutils and setuptools is done in two phases:
‘build’ and ‘install’. Whether a particular packaging tool chooses to do
the ‘heavy lifting’ of script creation (i.e. the things referred to
above, beyond simple copying) in ‘build’ or ‘install’ phases, the job is
the same. To abstract out just the functionality relating to scripts,
in an extensible way, we can just delegate the work to a class,
unimaginatively called ScriptMaker. Given the
above requirements, together with the more basic requirement of being able
to do ‘dry-run’ installation, we need to provide a ScriptMaker with the
following items of information:

	Where source scripts are to be found.

	Where scripts are to be installed.

	Whether, on Windows, executable launchers should be added.

	Whether a dry-run mode is in effect.

These dictate the form that ScriptMaker.__init__()
will take.

In addition, other methods suggest themselves for ScriptMaker:

	A make() method, which takes a specification, which is
either a filename or a ‘wrap me a callable’ indicator which looks
like this:

name = some_package.some_module:some_callable [flag(=value) ...]

The name would need to be a valid filename for a script, and the
some_package.some_module part would indicate the module where the
callable resides. The some_callable part identifies the callable,
and optionally you can have flags, which the ScriptMaker instance
must know how to interpret. One flag would be 'gui', indicating that
the launcher should be a Windows application rather than a console
application, for GUI-based scripts which shouldn’t show a console window.

The above specification is used by setuptools for the ‘console_scripts’
feature. See Flag formats for more information about flags.

Note

Both setuptools and PEP 426 [https://www.python.org/dev/peps/pep-0426] interpret flags as a single
value, which represents an extra (a set of optional dependencies needed
for optional features of a distribution).

It seems sensible for this method to return a list of absolute paths of
files that were installed (or would have been installed, but for the
dry-run mode being in effect).

	A make_multiple() method, which takes an iterable of
specifications and just runs calls make() on each
item iterated over, aggregating the results to return a list of absolute paths
of all files that were installed (or would have been installed, but for the
dry-run mode being in effect).

One advantage of having this method is that you can override it in a
subclass for post-processing, e.g. to run a tool like 2to3, or an
analysis tool, over all the installed files.

	The details of the callable specification can be encapsulated in a utility
function, get_exports_entry(). This would take a
specification and return None, if the specification didn’t match the
callable format, or an instance of ExportEntry if it did match.

In addition, the following attributes on a ScriptMaker could be further used
to refine its behaviour:

	force to indicate when scripts should be copied from source to target
even when timestamps show the target is up to date.

	set_mode to indicate whether, on Posix, the execute mode bits should be
set on the target script.

Flag formats

Flags, if present, are enclosed by square brackets. Each flag can have the
format of just an alphanumeric string, optionally followed by an ‘=’ and a
value (with no intervening spaces). Multiple flags can be separated by ‘,’
and whitespace. The following would be valid flag sections:

[a,b,c]
[a, b, c]
[a=b, c=d, e, f=g, 9=8]

whereas the following would be invalid:

[]
[\]
[a,]
[a,,b]
[a=,b,c]

Note

Both setuptools and PEP 426 [https://www.python.org/dev/peps/pep-0426] restrict flag formats to a single
value, without an =. This value represents an extra (a set of optional
dependencies needed for optional features of a distribution).

The version API

This section describes the design of the distlib API relating to versions.

The problem we’re trying to solve

Distribution releases are named by versions and versions have two principal
uses:

	Identifying a particular release and determining whether or not it is
earlier or later than some other release.

	When specifying other distributions that a distribution release depends on,
specifying constraints governing the releases of those distributions that are
depended upon.

In addition, qualitative information may be given by the version format about
the quality of the release: e.g. alpha versions, beta versions, stable
releases, hot-fixes following a stable release. The following excerpt from
PEP 386 [https://www.python.org/dev/peps/pep-0386] defines the requirements for versions:

	It should be possible to express more than one versioning level (usually this
is expressed as major and minor revision and, sometimes, also a micro
revision).

	A significant number of projects need special meaning versions for
“pre-releases” (such as “alpha”, “beta”, “rc”), and these have widely used
aliases (“a” stands for “alpha”, “b” for “beta” and “c” for “rc”). And these
pre-release versions make it impossible to use a simple alphanumerical
ordering of the version string components. (e.g. 3.1a1 < 3.1)

	Some projects also need “post-releases” of regular versions, mainly for
maintenance purposes, which can’t be clearly expressed otherwise.

	Development versions allow packagers of unreleased work to avoid version
clashes with later stable releases.

There are a number of version schemes in use. The ones of most interest in the
Python ecosystem are:

	Loose versioning in distutils. Any version number is allowed, with
lexicographical ordering. No support exists for pre- and post-releases,
and lexicographical ordering can be unintuitive (e.g. ‘1.10’ < ‘1.2.1’)

	Strict versioning in distutils, which supports slightly more
structure. It allows for up to three dot-separated numeric components, and
support for multiple alpha and beta releases. However, there is no support
for release candidates, nor for post-release versions.

	Versioning in setuptools/distribute. This is described in
PEP 386 [https://www.python.org/dev/peps/pep-0386] in
this section [http://www.python.org/dev/peps/pep-0386/#setuptools] –
it’s perhaps the most widely used Python version scheme, but since it tries
to be very flexible and work with a wide range of conventions, it ends up
allowing a very chaotic mess of version conventions in the Python community
as a whole.

	The proposed versioning scheme described in PEP 440 [https://www.python.org/dev/peps/pep-0440].

	Semantic versioning [http://semver.org/], which is rational, simple and
well-regarded in the software community in general.

Although the new versioning scheme mentioned in PEP 386 was implemented in
distutils2 and that code has been copied over to distlib, there are
many projects on PyPI which do not conform to it, but rather to the “legacy”
versioning schemes in distutils/setuptools/distribute. These
schemes are deserving of some support not because of their intrinsic qualities,
but due to their ubiquity in projects registered on PyPI. Below are some
results from testing actual projects on PyPI:

Packages processed: 24891
Packages with no versions: 217
Packages with versions: 24674
Number of packages clean for all schemes: 19010 (77%)
Number of packages clean for PEP 386: 21072 (85%)
Number of packages clean for PEP 386 + suggestion: 23685 (96%)
Number of packages clean for legacy: 24674 (100%, by you would expect)
Number of packages clean for semantic: 19278 (78%)

where “+ suggestion” refers to using the suggested version algorithm to derive
a version from a version which would otherwise be incompatible with PEP 386 [https://www.python.org/dev/peps/pep-0386].

A minimal solution

Since distlib is a low-level library which might be used by tools which
work with existing projects, the internal implementation of versions has
changed slightly from distutils2 to allow better support for legacy
version numbering. Since the re-implementation facilitated adding semantic
version support at minimal cost, this has also been provided.

Versions

The basic scheme is as follows. The differences between versioning schemes
is catered for by having a single function for each scheme which converts
a string version to an appropriate tuple which acts as a key for sorting
and comparison of versions. We have a base class, Version, which defines
any common code. Then we can have subclasses NormalizedVersion (PEP-386),
LegacyVersion (distribute/setuptools) and SemanticVersion.

To compare versions, we just check type compatibility and then compare the
corresponding tuples.

Matchers

Matchers take a name followed by a set of constraints in parentheses.
Each constraint is an operation together with a version string which
needs to be converted to the corresponding version instance.

In summary, the following attributes can be identified for Version and
Matcher:

	Version:

	
	version string passed in to constructor (stripped)

	parser to convert string string to tuple

	compare functions to compare with other versions of same type

	Matcher:

	
	version string passed in to constructor (stripped)

	name of distribution

	list of constraints

	parser to convert string to name and set of constraints,
using the same function as for Version to convert the version
strings in the constraints to version instances

	method to match version to constraints and return True/False

Given the above, it appears that all the functionality could be provided
with a single class per versioning scheme, with the only difference
between them being the function to convert from version string to tuple.
Any instance would act as either version or predicate, would display itself
differently according to which it is, and raise exceptions if the wrong
type of operation is performed on it (matching only allowed for predicate
instances; <=, <, >=, > comparisons only allowed for version instances;
and == and != allowed for either.

However, the use of the same class to implement versions and predicates leads
to ambiguity, because of the very loose project naming and versioning schemes
allowed by PyPI. For example, “Hello 2.0” could be a valid project name, and
“5” is a project name actually registered on PyPI. If distribution names can
look like versions, it’s hard to discern the developer’s intent when creating
an instance with the string “5”. So, we make separate classes for Version
and Matcher.

For ease of testing, the module will define, for each of the supported
schemes, a function to do the parsing (as no information is needed other than
the string), and the parse method of the class will call that function:

def normalized_key(s):
 "parse using PEP-386 logic"

def legacy_key(s):
 "parse using distribute/setuptools logic"

def semantic_key(s):
 "parse using semantic versioning logic"

class Version:
 # defines all common code

 def parse(self, s):
 raise NotImplementedError('Please implement in a subclass')

and then:

class NormalizedVersion(Version):
 def parse(self, s): return normalized_key(s)

class LegacyVersion(Version):
 def parse(self, s): return legacy_key(s)

class SemanticVersion(Version):
 def parse(self, s): return semantic_key(s)

And a custom versioning scheme can be devised to work in the same way:

def custom_key(s):
 """
 convert s to tuple using custom logic, raise UnsupportedVersionError
 on problems
 """

class CustomVersion(Version):
 def parse(self, s): return custom_key(s)

The matcher classes are pretty minimal, too:

class Matcher(object):
 version_class = None

 def match(self, string_or_version):
 """
 If passed a string, convert to version using version_class,
 then do matching in a way independent of version scheme in use
 """

and then:

class NormalizedMatcher(Matcher):
 version_class = NormalizedVersion

class LegacyMatcher(Matcher):
 version_class = LegacyVersion

class SemanticMatcher(Matcher):
 version_class = SemanticVersion

Version schemes

Ideally one would want to work with the PEP 386 scheme, but there might be times
when one needs to work with the legacy scheme (for example, when investigating
dependency graphs of existing PyPI projects). Hence, the important aspects of
each scheme are bundled into a simple VersionScheme class:

class VersionScheme(object):
 def __init__(self, key, matcher):
 self.key = key # version string -> tuple converter
 self.matcher = matcher # Matcher subclass for the scheme

Of course, the version class is also available through the matcher’s
version_class attribute.

VersionScheme makes it easier to work with alternative version schemes.
For example, say we decide to experiment with an “adaptive” version scheme,
which is based on the PEP 386 scheme, but when handed a non-conforming version,
automatically tries to convert it to a normalized version using
suggest_normalized_version(). Then, code which has to deal with version
schemes just has to pick the appropriate scheme by name.

Creating the adaptive scheme is easy:

def adaptive_key(s):
 try:
 result = normalized_key(s, False)
 except UnsupportedVersionError:
 s = suggest_normalized_version(s)
 if s is None:
 raise
 result = normalized_key(s, False)
 return result

class AdaptiveVersion(NormalizedVersion):
 def parse(self, s): return adaptive_key(s)

class AdaptiveMatcher(Matcher):
 version_class = AdaptiveVersion

The appropriate scheme can be fetched by using the get_scheme() function,
which is defined thus:

def get_scheme(scheme_name):
 "Get a VersionScheme for the given scheme_name."

Allowed names are 'normalized', 'legacy', 'semantic',
'adaptive' and 'default' (which points to the same as 'adaptive').
If an unrecognised name is passed in, a ValueError is raised.

The reimplemented distlib.version module is shorter than the corresponding
module in distutils2, but the entire test suite passes and there is support
for working with three versioning schemes as opposed to just one. However, the
concept of “final” versions, which is not in the PEP but which was in the
distutils2 implementation, has been removed because it appears of little
value (there’s no way to determine the “final” status of versions for many of
the project releases registered on PyPI).

The wheel API

This section describes the design of the wheel API which failitates
building and installing from wheels, the new binary distribution format for
Python described in PEP 427 [https://www.python.org/dev/peps/pep-0427].

The problem we’re trying to solve

There are basically two operations which need to be performed on wheels:

	Building a wheel from a source distribution.

	Installing a distribution which has been packaged as a wheel.

A minimal solution

Since we’re talking about wheels, it seems likely that a Wheel class
would be part of the design. This allows for extensibility over a purely
function-based API. The Wheel would be expected to have methods that
support the required operations:

class Wheel(object):
 def __init__(self, spec):
 """
 Initialise an instance from a specification. This can either be a
 valid filename for a wheel (for when you want to work with an
 existing wheel), or just the ``name-version-buildver`` portion of
 a wheel's filename (for when you're going to build a wheel for a
 known version and build of a named project).
 """

 def build(self, paths, tags=None):
 """
 Build a wheel. The ``name`, ``version`` and ``buildver`` should
 already have been set correctly. The ``paths`` should be a
 dictionary with keys 'prefix', 'scripts', 'headers', 'data' and one
 of 'purelib' and 'platlib'. These must point to valid paths if
 they are to be included in the wheel. The optional ``tags``
 argument should, if specified, be a dictionary with optional keys
 'pyver', 'abi' and 'arch' indicating lists of tags which
 indicate environments with which the wheel is compatible.
 """

 def install(self, paths, maker, **kwargs):
 """
 Install from a wheel. The ``paths`` should be a dictionary with
 keys 'prefix', 'scripts', 'headers', 'data', 'purelib' and
 'platlib'. These must point to valid paths to which files may
 be written if they are in the wheel. Only one of the 'purelib'
 and 'platlib' paths will be used (in the case where they are
 different), depending on whether the wheel is for a pure-
 Python distribution.

 The ``maker`` argument should be a suitably configured
 :class:`ScriptMaker` instance. The ``source_dir`` and
 ``target_dir`` arguments can be set to ``None`` when creating the
 instance - these will be set to appropriate values inside this
 method.

 The following keyword arguments are recognised:

 * ``warner``, if specified, should be a callable
 that will be called with (software_wheel_ver, file_wheel_ver)
 if they differ. They will both be in the form of tuples
 (major_ver, minor_ver). The ``warner`` defaults to ``None``.

 * It's conceivable that one might want to install only the library
 portion of a package -- not installing scripts, headers data and
 so on. If ``lib_only`` is specified as ``True``, only the
 ``site-packages`` contents will be installed. The default value
 is ``False`` (meaning everything will be installed).
 """

In addition to the above, the following attributes can be identified for a
Wheel instance:

	name – the name of the distribution

	version – the version of the distribution

	buildver – the build tag for the distribution

	pyver – a list of Python versions with which the wheel is compatible

	abi – a list of application binary interfaces (ABIs) with which the
wheel is compatible

	arch – a list of architectures with which the wheel is compatible

	dirname – The directory in which a wheel file is found/to be
created

	filename – The filename of the wheel (computed from the other
attributes)

Next steps

You might find it helpful to look at the API Reference.

Please enable JavaScript to view the comments powered by Disqus.

Comments powered by Disqus

 Copyright 2012-2016, The Python Software Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Distlib 0.2.3 documentation

API Reference

This is the place where the functions and classes in distlib's public API
are described.

The distlib.database package

Classes

	
class DistributionPath

	This class represents a set of distributions which are installed on a Python
path (like PYTHONPATH / sys.path). Both new-style (distlib) and
legacy (egg) distributions are catered for.

Methods:

	
__init__(path=None, include_egg=False)

	Initialise the instance using a particular path.

	Parameters:	
	path (list of str) – The path to use when looking for distributions.
If None is specified, sys.path is used.

	include_egg – If True, legacy distributions (eggs)
are included in the search; otherwise,
they aren’t.

	
enable_cache()

	Enables a cache, so that metadata information doesn’t have to be fetched
from disk. The cache is per instance of the DistributionPath instance
and is enabled by default. It can be disabled using disable_cache()
and cleared using clear_cache() (disabling won’t automatically
clear it).

	
disable_cache()

	Disables the cache, but doesn’t clear it.

	
clear_cache()

	Clears the cache, but doesn’t change its enabled/disabled status. If
enabled, the cache will be re-populated when querying for distributions.

	
get_distributions()

	The main querying method if you want to look at all the distributions. It
returns an iterator which returns Distribution and, if
include_egg was specified as True for the instance, also
instances of any EggInfoDistribution for any legacy
distributions found.

	
get_distribution(name)

	Looks for a distribution by name. It returns the first one found with
that name (there should only be one distribution with a given name on a
given search path). Returns None if no distribution was found, or
else an instance of Distribution (or, if include_egg was
specified as True for the instance, an instance of
EggInfoDistribution if a legacy distribution was found with that
name).

	Parameters:	name (str [http://docs.python.org/library/functions.html#str]) – The name of the distribution to search for.

	
get_exported_entries(category, name=None)

	Returns an iterator for entries exported by distributions on the path.

	Parameters:	
	category (str [http://docs.python.org/library/functions.html#str]) – The export category to look in.

	name (str [http://docs.python.org/library/functions.html#str]) – A specific name to search for. If not specified, all
entries in the category are returned.

	Returns:	An iterator which iterates over exported entries (instances of
ExportEntry).

	
class Distribution

	A class representing a distribution, typically one which hasn’t been
installed (most likely, one which has been obtained from an index like
PyPI).

Properties:

	
name

	The name of the distribution.

	
version

	The version of the distribution.

	
metadata

	The metadata for the distribution. This is a
distlib.metadata.Metadata instance.

	
download_url

	The download URL for the distribution. If there are multiple
URLs, this will be one of the values in download_urls.

	
download_urls

	A set of known download URLs for the distribution.

New in version 0.2.0: The download_urls attribute was added.

	
digest

	The digest for the source distribution. This is either None or a
2-tuple consisting of the hashing algorithm and the digest using that
algorithm, e.g. ('sha256', '01234...').

	
digests

	A dictionary mapping download URLs to digests, if and when digests are
available.

New in version 0.2.0: The digests attribute was added.

	
locator

	The locator for an instance which has been retrieved through a locator.
This is None for an installed distribution.

	
class InstalledDistribution(Distribution)

	A class representing an installed distribution. This class is not
instantiated directly, except by packaging tools. Instances of it
are returned from querying a DistributionPath.

Properties:

	
requested

	Whether the distribution was installed by user request (if not, it may
have been installed as a dependency of some other distribution).

	
exports

	The distribution’s exports, as described in Exporting things from Distributions. This
is a cached property.

Methods:

	
list_installed_files(local=False)

	Returns an iterator over all of the individual files installed as part of
the distribution, including metadata files. The iterator returns tuples
of the form (path, hash, size). The list of files is written by the
installer to the RECORD metadata file.

	Parameters:	local – If True, the paths returned are local absolute paths
(i.e. with platform-specific directory separators as
indicated by os.sep); otherwise, they are the values
stored in the RECORD metadata file.

	
list_distinfo_files(local=False)

	Similar to list_installed_files(), but only returns metadata files.

	Parameters:	local – As for list_installed_files().

	
check_installed_files()

	Runs over all the installed files to check that the size and checksum are
unchanged from the values in the RECORD file, written when the
distribution was installed. It returns a list of mismatches. If the files
in the distribution haven’t been corrupted , an empty list will be
returned; otherwise, a list of mismatches will be returned.

	Returns:	A list which, if non-empty, will contain tuples with the
following elements:
	The path in RECORD which failed to match.

	One of the strings ‘exists’, ‘size’ or ‘hash’ according to
what didn’t match (existence is checked first, then size,
then hash).

	The expected value of what didn’t match (as obtained from
RECORD).

	The actual value of what didn’t match (as obtained from the
file system).

	
read_exports(filename=None)

	Read exports information from a file.

Normal access to a distribution’s exports should be through its
exports attribute. This method is called from there as needed.
If no filename is specified, the EXPORTS file in the .dist-info
directory is read (it is expected to be present).

	Parameters:	filename (str [http://docs.python.org/library/functions.html#str]) – The filename to read from, or None to read from the
default location.

	Returns:	The exports read from the file.

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	
write_exports(exports, filename=None)

	Write exports information to a file.

If no filename is specified, the EXPORTS file in the .dist-info
directory is written.

	Parameters:	
	exports (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dictionary whose keys are categories and whose values
are dictionaries which contain ExportEntry
instances keyed on their name.

	filename (str [http://docs.python.org/library/functions.html#str]) – The filename to read from, or None to read from the
default location.

	
class EggInfoDistribution

	Analogous to Distribution, but covering legacy distributions. This
class is not instantiated directly. Instances of it are returned from
querying a DistributionPath.

Properties:

	
name

	The name of the distribution.

	
version

	The version of the distribution.

	
metadata

	The metadata for the distribution. This is a
distlib.metadata.Metadata instance.

Methods:

	
list_installed_files(local=False)

	Returns a list all of the individual files installed as part of
the distribution.

	Parameters:	local – If True, the paths returned are local absolute paths
(i.e. with platform-specific directory separators as
indicated by os.sep).

	
class DependencyGraph

	This class represents a dependency graph between releases. The nodes are
distribution instances; the edges model dependencies. An edge from a
to b means that a depends on b.

	
add_distribution(distribution)

	Add distribution to the graph.

	
add_edge(x, y, label=None)

	Add an edge from distribution x to distribution y with the given
label (string).

	
add_missing(distribution, requirement)

	Add a missing requirement (string) for the given distribution.

	
repr_node(dist, level=1)

	Print a subgraph starting from dist. level gives the depth of the
subgraph.

Direct access to the graph nodes and edges is provided through these
attributes:

	
adjacency_list

	Dictionary mapping distributions to a list of (other, label) tuples
where other is a distribution and the edge is labelled with label
(i.e. the version specifier, if such was provided).

	
reverse_list

	Dictionary mapping distributions to a list of predecessors. This allows
efficient traversal.

	
missing

	Dictionary mapping distributions to a list of requirements that were not
provided by any distribution.

The distlib.resources package

Attributes

	
cache

	An instance of ResourceCache. This can be set after module
import, but before calling any functionality which uses it, to ensure
that the cache location is entirely under your control.

If you access the file_path property of Resource instance,
the cache will be needed, and if not set by you, an instance with
a default location will be created. See distlib.util.get_cache_base()
for more information.

Functions

	
finder(package)

	Get a finder for the specified package.

If the package hasn’t been imported yet, an attempt will be made to import
it. If importing fails, an ImportError will be raised.

	Parameters:	package (str [http://docs.python.org/library/functions.html#str]) – The name of the package for which a finder is desired.

	Returns:	A finder for the package.

	
register_finder(loader, finder_maker)

	Register a callable which makes finders for a particular type of PEP 302 [https://www.python.org/dev/peps/pep-0302]
loader.

	Parameters:	
	loader – The loader for which a finder is to be returned.

	finder_maker – A callable to be registered, which is called
when a loader of the specified type is used
to load a package. The callable is called
with a single argument – the Python module object
corresponding to the package – and must return a
finder for that package.

Classes

	
class Resource

	A class representing resources. It is never instantiated directly, but
always through calling a finder’s find method.

Properties:

	
is_container

	Whether this instance is a container of other resources.

	
bytes

	All of the resource data as a byte string. Raises an exception
if accessed on a container resource.

	
size

	The size of the resource data in bytes. Raises an exception if
accessed on a container resource.

	
resources

	The relative names of all the contents of this resource. Raises an
exception if accessed on a resource which is not a container.

	
path

	This attribute is set by the resource’s finder. It is a textual
representation of the path, such that if a PEP 302 loader’s
get_data() method is called with the path, the resource’s
bytes are returned by the loader. This attribute is analogous to
the resource_filename API in setuptools. Note that for
resources in zip files, the path will be a pointer to the resource
in the zip file, and not directly usable as a filename. While
setuptools deals with this by extracting zip entries to cache
and returning filenames from the cache, this does not seem an
appropriate thing to do in this package, as a resource is already
made available to callers either as a stream or a string of bytes.

	
file_path

	This attribute is the same as the path for file-based resource.
For resources in a .zip file, the relevant resource is extracted
to a file in a cache in the file system, and the name of the cached
file is returned. This is for use with APIs that need file names,
or need to be able to access data through OS-level file handles. See
the Cache documentation for more
information about the cache.

Methods:

	
as_stream()

	A binary stream of the resource’s data. This must be closed by the caller
when it’s finished with.

Raises an exception if called on a container resource.

	
class ResourceFinder

	A base class for resource finders, which finds resources for packages stored
in the file system.

	
__init__(module)

	Initialise the finder for the package specified by module.

	Parameters:	module – The Python module object representing a package.

	
find(resource_name)

	Find a resource with the name specified by resource_name and
return a Resource instance which represents it.

	Parameters:	resource_name – A fully qualified resource name, with
hierarchical components separated by ‘/’.

	Returns:	A Resource instance, or None if a resource
with that name wasn’t found.

	
iterator(resource_name)

	Return a generator which walks through the resources available through
resource_name.

	Parameters:	resource_name – A fully qualified resource name, with
hierarchical components separated by ‘/’.
You can use ‘’ to mean the ‘root’ resource.
If the resource name refers to a non-container
resource, only that resource is returned.
Otherwise, the named resource is returned, followed
by its children, recursively. If there is no
resource named resource_name, None is
returned.

	Returns:	A generator to iterate over resources, or None.

	
is_container(resource)

	Return whether a resource is a container of other resources.

	Parameters:	resource (a Resource instance) – The resource whose status as container is wanted.

	Returns:	True or False.

	
get_stream(resource)

	Return a binary stream for the specified resource.

	Parameters:	resource (a Resource instance) – The resource for which a stream is wanted.

	Returns:	A binary stream for the resource.

	
get_bytes(resource)

	Return the contents of the specified resource as a byte string.

	Parameters:	resource (a Resource instance) – The resource for which the bytes are wanted.

	Returns:	The data in the resource as a byte string.

	
get_size(resource)

	Return the size of the specified resource in bytes.

	Parameters:	resource (a Resource instance) – The resource for which the size is wanted.

	Returns:	The size of the resource in bytes.

	
class ZipResourceFinder

	This has the same interface as ResourceFinder.

	
class ResourceCache

	This class implements a cache for resources which must be accessible as
files in the file system. It is based on Cache, and
adds resource-specific methods.

	
__init__(base=None)

	Initialise a cache instance with a specific directory which holds the
cache. If base is not specified, the value resource-cache in the
directory returned by get_cache_base() is used.

	
get(resource)

	Ensures that the resource is available as a file in the file system,
and returns the name of that file. This method calls the resource’s
finder’s get_cache_info() method.

	
is_stale(resource, path)

	Returns whether the data in the resource which is cached in the file
system is stale compared to the resource’s current data. The default
implementation returns True, causing the resource’s data to be
re-written to the file every time.

The distlib.scripts package

Classes

	
class ScriptMaker

	A class used to install scripts based on specifications.

	
source_dir

	The directory where script sources are to be found.

	
target_dir

	The directory where scripts are to be created.

	
add_launchers

	Whether to create native executable launchers on Windows.

	
force

	Whether to overwrite scripts even when timestamps show they’re up to
date.

	
set_mode

	Whether, on Posix, the scripts should have their execute mode set.

	
script_template

	The text of a template which should contain %(shebang)s,
%(module)s and %(func)s in the appropriate places.

The attribute is defined at class level. You can override it at the
instance level to customise your scripts.

	
__init__(source_directory, target_directory, add_launchers=True, dry_run=False)

	Initialise the instance with options that control its behaviour.

	Parameters:	
	source_directory (str [http://docs.python.org/library/functions.html#str]) – Where to find scripts to install.

	target_directory (str [http://docs.python.org/library/functions.html#str]) – Where to install scripts to.

	add_launchers (bool [http://docs.python.org/library/functions.html#bool]) – If true, create executable launchers on Windows.
The executables are currently generated from the
following project:

https://bitbucket.org/vinay.sajip/simple_launcher/

	dry_run – If true, don’t actually install scripts - just pretend to.

	
make(specification, options=None)

	Make a script in the target directory.

	Parameters:	
	specification (str [http://docs.python.org/library/functions.html#str]) – A specification, which can take one of the
following forms:

	A filename, relative to source_directory,
such as foo.py or subdir/bar.py.

	A reference to a callable, given in the form:name = some_package.some_module:some_callable [flags]

where the flags part is optional.

When this form is passed, a Python stub script
is created with the appropriate shebang line and
with code to load and call the specified callable
with no arguments, returning its value as the
return code from the script.

For more information about flags, see
Flag formats.

	options (dict [http://docs.python.org/library/stdtypes.html#dict]) – If specified, a dictionary of options used to control
script creation. Currently, the following keys are
checked:

gui: This should be a bool which, if True,
indicates that the script is a windowed
application. This distinction is only drawn
on Windows if add_launchers is True,
and results in a windowed native launcher
application if options['gui'] is True
(otherwise, the native executable launcher
is a console application).interpreter_args: If specified, this should be
a list of strings which are appended to the
interpreter executable in the shebang line. If there
are values with spaces, you will need to surround
them with double quotes.

Note

Linux does not handle passing arguments
to interpreters particularly well – multiple
arguments are bundled up into one when passing to
the interpreter – see
https://en.wikipedia.org/wiki/Shebang_line#Portability
for more information. This may also affect other
POSIX platforms – consult the OS documentation
for your system if necessary. On Windows, the
distlib native executable launchers do parse
multiple arguments and pass them to the
interpreter.

	Returns:	A list of absolute pathnames of files installed (or which
would have been installed, but for dry_run being true).

	
make_multiple(specifications, options)

	Make multiple scripts from an iterable.

This method just calls make() once for each value returned by the
iterable, but it might be convenient to override this method in some
scenarios to do post-processing of the installed files (for example,
running 2to3 on them).

	Parameters:	
	specifications – an iterable giving the specifications to follow.

	options – As for the make() method.

	Returns:	A list of absolute pathnames of files installed (or which
would have been installed, but for dry_run being true).

The distlib.locators package

Classes

	
class Locator

	The base class for locators. Implements logic common to multiple locators.

	
__init__(scheme='default')

	Initialise an instance of the locator.

	Parameters:	scheme (str [http://docs.python.org/library/functions.html#str]) – The version scheme to use.

	
get_project(name)

	This method should be implemented in subclasses. It returns a
(potentially empty) dictionary whose keys are the versions located
for the project named by name, and whose values are instances of
distlib.util.Distribution.

	
convert_url_to_download_info(url, project_name)

	Extract information from a URL about the name and version of a
distribution.

	Parameters:	
	url (str [http://docs.python.org/library/functions.html#str]) – The URL potentially of an archive (though it needn’t be).

	project_name (str [http://docs.python.org/library/functions.html#str]) – This must match the project name determined from the
archive (case-insensitive matching is used).

	Returns:	None if the URL does not appear to be that of a
distribution archive for the named project. Otherwise, a
dictionary is returned with the following keys at a minimum:

	url – the URL passed in, minus any fragment portion.

	filename – a suitable filename to use for the archive
locally.

Optional keys returned are:

	md5_digest – the MD5 hash of the archive, for verification
after downloading. This is extracted from the fragment
portion, if any, of the passed-in URL.

	sha256_digest – the SHA256 hash of the archive, for
verification after downloading. This is extracted from the
fragment portion, if any, of the passed-in URL.

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	
get_distribution_names()

	Get the names of all distributions known to this locator.

The base class raises NotImplementedError; this method should
be implemented in a subclass.

	Returns:	All distributions known to this locator.

	Return type:	set [http://docs.python.org/library/stdtypes.html#set]

	
locate(requirement, prereleases=False)

	This tries to locate the latest version of a potentially downloadable
distribution which matches a requirement (name and version constraints).
If a potentially downloadable distribution (i.e. one with a download
URL) is not found, None is returned – otherwise, an instance of
Distribution is returned. The returned
instance will have, at a minimum, name, version and
source_url populated.

	Parameters:	
	requirement (str [http://docs.python.org/library/functions.html#str]) – The name and optional version constraints of the
distribution to locate, e.g. 'Flask' or
'Flask (>= 0.7, < 0.9)'.

	prereleases (bool [http://docs.python.org/library/functions.html#bool]) – If True, prereleases are treated like normal
releases. The default behaviour is to not return any
prereleases unless they are the only ones which match
the requirement.

	Returns:	A matching instance of Distribution,
or None.

	
class DirectoryLocator(Locator)

	This locator scans the file system under a base directory, looking for
distribution archives. The locator scans all subdirectories recursively,
unless the recursive flag is set to False.

	
__init__(base_dir, **kwargs)

	

	Parameters:	
	base_dir (str [http://docs.python.org/library/functions.html#str]) – The base directory to scan for distribution archives.

	kwargs – Passed to base class constructor, apart from the
following keyword arguments:

	recursive (defaults to True) – if False,
no recursion into subdirectories occurs.

	
class PyPIRPCLocator(Locator)

	This locator uses the PyPI XML-RPC interface to locate distribution
archives and other data about downloads.

	
__init__(url, **kwargs)

	

	param url:	The base URL to use for the XML-RPC service.

	type url:	str

	param kwargs:	Passed to base class constructor.

	
get_project(name)

	See Locator.get_project().

	
class PyPIJSONLocator(Locator)

	This locator uses the PyPI JSON interface to locate distribution
archives and other data about downloads. It gets the metadata and URL
information in a single call, so it should perform better than the
XML-RPC locator.

	
__init__(url, **kwargs)

	

	param url:	The base URL to use for the JSON service.

	type url:	str

	param kwargs:	Passed to base class constructor.

	
get_project(name)

	See Locator.get_project().

	
class SimpleScrapingLocator

	This locator uses the PyPI ‘simple’ interface – a Web scraping interface –
to locate distribution archives.

	
__init__(url, timeout=None, num_workers=10, **kwargs)

	

	Parameters:	
	url (str [http://docs.python.org/library/functions.html#str]) – The base URL to use for the simple service HTML pages.

	timeout (float [http://docs.python.org/library/functions.html#float]) – How long (in seconds) to wait before giving up on a
remote resource.

	num_workers (int [http://docs.python.org/library/functions.html#int]) – The number of worker threads created to perform
scraping activities.

	kwargs – Passed to base class constructor.

	
class DistPathLocator

	This locator uses a DistributionPath instance to locate installed
distributions.

	
__init__(url, distpath, **kwargs)

	

	Parameters:	
	distpath (DistributionPath) – The distribution path to use.

	kwargs – Passed to base class constructor.

	
class AggregatingLocator(Locator)

	This locator uses a list of other aggregators and delegates finding projects
to them. It can either return the first result found (i.e. from the first
aggregator in the list provided which returns a non-empty result), or a
merged result from all the aggregators in the list.

	
__init__(*locators, **kwargs)

	

	Parameters:	
	locators (sequence of locators) – A list of aggregators to delegate finding projects to.

	merge (bool [http://docs.python.org/library/functions.html#bool]) – If this kwarg is True, each aggregator in the list is
asked to provide results, which are aggregated into a
results dictionary. If False, the first non-empty
return value from the list of aggregators is returned.
The locators are consulted in the order in which they’re
passed in.

	
class DependencyFinder

	This class allows you to recursively find all the distributions which a
particular distribution depends on.

	
__init__(locator)

	Initialise an instance with the locator to be used for locating
distributions.

	
find(requirement, metas_extras=None, prereleases=False)

	Find all the distributions needed to fulfill requirement.

	Parameters:	
	requirement – A string of the from name (version) where
version can include an inequality constraint, or an
instance of Distribution (e.g. representing
a distribution on the local hard disk).

	meta_extras – A list of meta extras such as :test:, :build: and
so on, to be included in the dependencies.

	prereleases – If True, allow pre-release versions to be
returned - otherwise, don’t return prereleases
unless they’re all that’s available.

	Returns:	A 2-tuple. The first element is a set of Distribution
instances. The second element is a set of problems encountered
during dependency resolution. Currently, if this set is non-
empty, it will contain 2-tuples whose first element is the
string ‘unsatisfied’ and whose second element is a requirement
which couldn’t be satisfied.

In the set of Distribution instances returned, some
attributes will be set:

	The instance representing the passed-in requirement will
have the requested attribute set to True.

	All requirements which are not installation requirements (in
other words, are needed only for build and test) will have
the build_time_dependency attribute set to True.

Functions

	
get_all_distribution_names(url=None)

	Retrieve the names of all distributions registered on an index.

	Parameters:	url (str [http://docs.python.org/library/functions.html#str]) – The XML-RPC service URL of the node to query. If not specified,
The main PyPI index is queried.

	Returns:	A list of the names of distributions registered on the index.
Note that some of the names may be Unicode.

	Return type:	list [http://docs.python.org/library/functions.html#list]

	
locate(requirement, prereleases=False)

	This convenience function returns the latest version of a potentially
downloadable distribution which matches a requirement (name and version
constraints). If a potentially downloadable distribution (i.e. one with
a download URL) is not found, None is returned – otherwise, an
instance of Distribution is returned. The
returned instance will have, at a minimum, name, version,
download_url and download_urls.

	Parameters:	
	requirement (str [http://docs.python.org/library/functions.html#str]) – The name and optional version constraints of the
distribution to locate, e.g. 'Flask' or
'Flask (>= 0.7, < 0.9)'.

	prereleases (bool [http://docs.python.org/library/functions.html#bool]) – If True, prereleases are treated like normal
releases. The default behaviour is to not return any
prereleases unless they are the only ones which match
the requirement.

	Returns:	A matching instance of Distribution,
or None.

Variables

	
default_locator

	This attribute holds a locator which is used by locate() to locate
distributions.

The distlib.index package

Classes

	
class PackageIndex

	This class represents a package index which is compatible with PyPI, the
Python Package Index. It allows you to register projects, upload source
and binary distributions (with support for digital signatures), upload
documentation, verify signatures and get a list of hosts which are mirrors
for the index.

Methods:

	
__init__(url=None, mirror_host=None)

	

Initialise an instance, setting instance attributes named from the keyword
arguments.

	Parameters:	
	url – The root URL for the index. If not specified, the URL for PyPI
is used (‘http://pypi.python.org/pypi‘).

	mirror_host – The DNS name for a host which can be used to
determine available mirror hosts for the index. If not
specified, the value ‘last.pypi.python.org’ is used.

	
register(metadata)

	Register a project with the index.

	Parameters:	metadata – A Metadata instance. This
should have at least the Name and Version
fields set, and ideally as much metadata as possible
about this distribution. Though it might seem odd to
have to specify a version when you are initially
registering a project, this is required by PyPI. You
can see this in PyPI’s Web UI when you click the
“Package submission” link in the left-hand side menu.

	Returns:	An urllib HTTP response returned by the index. If an error
occurs, an HTTPError exception will be raised.

	
upload_file(metadata, filename, signer=None, sign_password=None,

	
filetype='sdist', pyversion='source', keystore=None)

	Upload a distribution to the index.

	Parameters:	
	metadata – A Metadata instance. This
should have at least the Name and Version
fields set, and ideally as much metadata as possible
about this distribution.

	file_name – The path to the file which is to be uploaded.

	signer – If specified, this needs to be a string identifying the
GnuPG private key which is to be used for signing the
distribution.

	sign_password – The passphrase which allows access to the private
key used for the signature.

	filetype – The type of the file being uploaded. This would have
values such as sdist (for a source distribution),
bdist_wininst for a Windows installer, and so on.
Consult the distutils documentation for the full
set of possible values.

	pyversion – The Python version this distribution is compatible
with. If it’s a pure-Python distribution, the value
to use would be source - for distributions which
are for specific Python versions, you would use the
Python version in the form X.Y.

	keystore – The path to a directory which contains the keys
used in signing. If not specified, the
instance’s gpg_home attribute is used instead. This
parameter is not used unless a signer is specified.

	Returns:	An urllib HTTP response returned by the index. If an error
occurs, an HTTPError exception will be raised.

Changed in version 0.1.9: The keystore argument was added.

	
upload_documentation(metadata, doc_dir)

	Upload HTML documentation to the index. The contents of the specified
directory tree will be packed into a .zip file which is then uploaded
to the index.

	Parameters:	
	metadata – A Metadata instance. This
should have at least the Name and Version
fields set.

	doc_dir – The path to the root directory for the HTML
documentation. This directory should be the one that
contains index.html.

	Returns:	An urllib HTTP response returned by the index. If an error
occurs, an HTTPError exception will be raised.

	
verify_signature(self, signature_filename, data_filename,

	
keystore=None)

	Verify a digital signature against a downloaded distribution.

	Parameters:	
	signature_filename – The path to the file which contains the
digital signature.

	data_filename – The path to the file which was supposedly signed
to obtain the signature in signature_filename.

	keystore – The path to a directory which contains the keys
used in verification. If not specified, the
instance’s gpg_home attribute is used instead.

	Returns:	True if the signature can be verified, else False. If
an error occurs (e.g. unable to locate the public key used to
verify the signature), a ValueError is raised.

Changed in version 0.1.9: The keystore argument was added.

	
search(query, operation=None)

	Search the index for distributions matching a search query.

	Parameters:	
	query – The query, either as a string or a dictionary. If a string
'foo' is passed, it will be treated equivalently to
passing the dictionary {'name': 'foo'}. The dictionary
can have the following keys:

	name

	version

	stable_version

	author

	author_email

	maintainer

	maintainer_email

	home_page

	license

	summary

	description

	keywords

	platform

	download_url

	classifiers (list of classifier strings)

	project_url

	docs_url (URL of the pythonhosted.org docs if they’ve
been supplied)

	operation – If specified, it should be either 'and' or
'or'. If not specified, 'and' is assumed. This
is only used if a passed dictionary has multiple keys.
It determines whether the intersection or the union of
matches is returned.

	Returns:	A (possibly empty) list of the distributions matching the
query. Each entry in the list will be a dictionary with the
following keys:

	_pypi_ordering – the internal ordering value (an integer)

	name –The name of the distribution

	version – the version of the distribution

	summary – the summary for that version

New in version 0.1.8.

Additional attributes:

	
username

	The username to use when authenticating with the index.

	
password

	The password to use when authenticating with the index.

	
gpg

	The path to the signing and verification program.

	
gpg_home

	The location of the key database for the signing and verification
program.

	
mirrors

	The list of hosts which are mirrors for this index.

	
boundary

	The boundary value to use when MIME-encoding requests to be sent to the
index. This should be a byte-string.

The distlib.util package

Classes

	
class Cache

	This base class implements common operations for distlib caches.

	
__init__(base)

	Initialise a cache instance with a specific directory which holds the
cache.

Warning

If base is specified and exists, it should exist and its
permissions (relevant on POSIX only) should be set to 0700 - i.e. only
the user of the running process has any rights over the directory. If
this is not done, the application using this functionality may be
vulnerable to security breaches as a result of other processes being
able to interfere with the cache.

	
prefix_to_dir(prefix)

	Converts a prefix (e.g. the name of a resource’s containing .zip, or a
wheel pathname) into a directory name in the cache. This implementation
delegates the work to path_to_cache_dir().

	
class ExportEntry

	Attributes:

A class holding information about a exports entry.

	
name

	The name of the entry.

	
prefix

	The prefix part of the entry. For a callable or data item in a module,
this is the name of the package or module containing the item.

	
suffix

	The suffix part of the entry. For a callable or data item in a module,
this is a dotted path which points to the item in the module.

	
flags

	A list of flags. See Flag formats for more information.

	
value

	The actual value of the entry (a callable or data item in a module, or
perhaps just a module). This is a cached property of the instance, and
is determined by calling resolve() with the prefix and
suffix properties.

	
dist

	The distribution which exports this entry. This is normally an
instance of InstalledDistribution.

Functions

	
get_cache_base()

	Return the base directory which will hold distlib caches. If the directory
does not exist, it is created.

On Windows, if LOCALAPPDATA is defined in the environment, then it is
assumed to be a directory, and will be the parent directory of the result.
On POSIX, and on Windows if LOCALAPPDATA is not defined, the user’s home
directory – as determined using os.expanduser('~') – will be the
parent directory of the result.

The result is just the directory '.distlib' in the parent directory as
determined above.

If a home directory is unavailable (no such directory, or if it’s write-
protected), a parent directory for the cache is determined using
tempfile.mkdtemp() [http://docs.python.org/library/tempfile.html#tempfile.mkdtemp]. This returns a directory to which only the
running process has access (permission mask 0700 on POSIX), meaning that
the cache should be isolated from possible malicious interference by other
processes.

Note

This cache is used for the following purposes:

	As a place to cache package resources which need to be in the file
system, because they are used by APIs which either expect filesystem
paths, or to be able to use OS-level file handles. An example of the
former is the SSLContext.load_verify_locations() method in
Python’s ssl module. The subdirectory resource-cache is used
for this purpose.

	As a place to cache shared libraries which are extracted as a result
of calling the mount() method of the
Wheel class. The subdirectory dylib-cache is used
for this purpose.

The application using this cache functionality, whether through the
above mechanisms or through using the value returned from here directly,
is responsible for any cache cleanup that is desired. Note that on
Windows, you may not be able to do cache cleanup if any of the cached
files are open (this will generally be the case with shared libraries,
i.e. DLLs). The best way to do cache cleanup in this scenario may be on
application startup, before any resources have been cached or wheels
mounted.

	
path_to_cache_dir(path)

	Converts a path (e.g. the name of an archive) into a directory name
suitable for use in a cache. The following algorithm is used:

	On Windows, any ':' in the drive is replaced with '---'.

	Any occurrence of os.sep is replaced with '--'.

	'.cache' is appended.

	
get_export_entry(specification)

	Return a export entry from a specification, if it matches the
expected format, or else None.

	Parameters:	specification (str [http://docs.python.org/library/functions.html#str]) – A specification, as documented for the
distlib.scripts.ScriptMaker.make() method.

	Returns:	None if the specification didn’t match the expected form
for an entry, or else an instance of ExportEntry
holding information about the entry.

	
resolve(module_name, dotted_path)

	Given a module name and a dotted_path representing an object in that
module, resolve the passed parameters to an object and return that object.

If the module has not already been imported, this function attempts to
import it, then access the object represented by dotted_path in the
module’s namespace. If dotted_path is None, the module is returned.
If import or attribute access fails, an ImportError or
AttributeError will be raised.

	Parameters:	
	module_name (str [http://docs.python.org/library/functions.html#str]) – The name of a Python module or package, e.g. os or
os.path.

	dotted_path (str [http://docs.python.org/library/functions.html#str]) – The path of an object expected to be in the module’s
namespace, e.g. 'environ', 'sep' or
'path.supports_unicode_filenames'.

The distlib.wheel package

This package has functionality which allows you to work with wheels (see PEP 427 [https://www.python.org/dev/peps/pep-0427]).

Attributes

	
cache

	An instance of distlib.util.Cache. This can be set after module
import, but before calling any functionality which uses it, to ensure
that the cache location is entirely under your control.

If you call the mount method of a Wheel instance, and the
wheel is successfully mounted and contains C extensions, the cache will
be needed, and if not set by you, an instance with a default location
will be created. See distlib.util.get_cache_base() for more
information.

Classes

	
class Wheel

	This class represents wheels – either existing wheels, or wheels to be built.

	
__init__(spec)

	Initialise an instance from a specification.

	Parameters:	spec (str [http://docs.python.org/library/functions.html#str]) – This can either be a valid filename for a wheel (for when
you want to work with an existing wheel), or just the
name-version-buildver portion of a wheel’s filename (for
when you’re going to build a wheel for a known version and
build of a named project).

	
build(paths, tags=None, wheel_version=None)

	Build a wheel. The name, version and buildver should already
have been set correctly.

	Parameters:	
	paths – This should be a dictionary with keys 'prefix',
'scripts', 'headers', 'data' and one of
'purelib' or 'platlib'. These must point to valid
paths if they are to be included in the wheel.

	tags – If specified, this should be a dictionary with optional keys
'pyver', 'abi' and 'arch' indicating lists of
tags which indicate environments with which the wheel is
compatible.

	wheel_version – If specified, this is written to the wheel’s
“Wheel-Version” metadata. If not specified, the
implementation’s latest supported wheel version is
used.

	
install(self, paths, maker, **kwargs)

	Install from a wheel.

	Parameters:	
	paths – This should be a dictionary with keys 'prefix',
'scripts', 'headers', 'data', 'purelib'
and 'platlib'. These must point to valid paths to which
files may be written if they are in the wheel. Only one of
the 'purelib' and 'platlib' paths will be used (in
the case where they are different), depending on whether
the wheel is for a pure-Python distribution.

	maker – This should be set to a suitably configured instance of
ScriptMaker. The source_dir and target_dir
arguments can be set to None when creating the
instance - these will be set to appropriate values inside
this method.

	warner – If specified, should be a callable that will be called
with (software_wheel_ver, file_wheel_ver) if they differ.
They will both be in the form of tuples (major_ver,
minor_ver).

	lib_only – It’s conceivable that one might want to install only
the library portion of a package – not installing
scripts, headers, data and so on. If lib_only is
specified as True, only the site-packages
contents will be installed.

	
is_compatible()

	Determine whether this wheel instance is compatible with the
running Python.

	Returns:	True if compatible, else False.

	
is_mountable()

	Determine whether this wheel instance is indicated suitable for
mounting in its metadata.

	Returns:	True if mountable, else False.

	
mount(append=False)

	
Mount the wheel so that its contents can be imported directly, without
the need to install the wheel. If the wheel contains C extensions and
has metadata about these extensions, the extensions are also available
for import.

If the wheel tags indicate it is not compatible with the running Python,
a DistlibException is raised. (The is_compatible()
method is used to determine compatibility.)

If the wheel is indicated as not suitable for mounting, a
DistlibException is raised. (The is_mountable()
method is used to determine mountability.)

	param append:	If True, the wheel’s pathname is added to the end of
sys.path. By default, it is added to the beginning.

Note

Wheels may state in their metadata that they are not
intended to be mountable, in which case this method will raise a
DistlibException with a suitable message. If C extensions
are extracted, the location for extraction will be under the
directory dylib-cache in the directory returned by
get_cache_base().

Wheels may be marked by their publisher as unmountable to indicate
that running directly from a zip is not supported by the packaged
software.

	
unmount()

	Unmount the wheel so that its contents can no longer be imported
directly. If the wheel contains C extensions and has metadata about these
extensions, the extensions are also made unavailable for import.

Note

Unmounting does not automatically clean up any extracted C
extensions, as that may not be desired (and not possible, on Windows,
because the files will be open). See the
get_cache_base() documentation for suggested
cleanup scenarios.

	
verify()

	Verify sizes and hashes of the wheel’s contents against the sizes and
hashes declared in the wheel’s RECORD. Raise a
DistlibException if a size or digest mismatch is detected.

New in version 0.1.8.

	
update(modifier, dest_dir=None, **kwargs)

	Allows a user-defined callable access to the contents of a wheel. The
callable can modify the contents of the wheel, add new entries or
remove entries. The method first extracts the wheel’s contents to a
temporary location, and then calls the modifier like this:

modified = modifier(path_map, **kwargs)

where path_map is a dictionary mapping archive paths to the location
of the corresponding extracted archive entry, and kwargs is whatever
was passed to the update method. If the modifier returns True,
a new wheel is built from the (possibly updated) contents of path_map
and, as a final step, copied to the location of the original wheel
(hence effectively modifying it in-place). The passed path_map will
contain all of the wheel’s entries other than the RECORD entry (which
will be recreated if a new wheel is built).

New in version 0.1.8.

	
name

	The name of the distribution.

	
version

	The version of the distribution

	
buildver

	The build tag for the distribution.

	
pyver

	A list of Python versions with which the wheel is compatible. See
PEP 427 [https://www.python.org/dev/peps/pep-0427] and PEP 425 [https://www.python.org/dev/peps/pep-0425] for details.

	
abi

	A list of application binary interfaces (ABIs) with which the wheel is
compatible. See PEP 427 [https://www.python.org/dev/peps/pep-0427] and PEP 425 [https://www.python.org/dev/peps/pep-0425] for details.

	
arch

	A list of architectures with which the wheel is compatible. See
PEP 427 [https://www.python.org/dev/peps/pep-0427] and PEP 425 [https://www.python.org/dev/peps/pep-0425] for details.

	
dirname

	The directory in which a wheel file is found/to be created.

	
filename

	The filename of the wheel (computed from the other attributes)

	
metadata

	The metadata for the distribution in the wheel, as a Metadata
instance.

	
info

	The wheel metadata (contents of the WHEEL metadata file) as a
dictionary.

	
exists

	Whether the wheel file exists.

New in version 0.1.8.

Functions

	
is_compatible(wheel, tags=None)

	Indicate if a wheel is compatible with a set of tags. If any combination of
the tags of wheel is found in tags, then the wheel is considered to
be compatible.

	Parameters:	
	wheel – A Wheel instance or the filename of a wheel.

	tags – A set of tags to check for compatibility. If not specified,
it defaults to the set of tags which are compatible with this
Python implementation.

	Returns:	True if compatible, else False.

Attributes

	
COMPATIBLE_TAGS

	A set of (pyver, abi, arch) tags which are compatible with this
Python implementation.

Next steps

You might find it helpful to look at the
mailing list [http://mail.python.org/mailman/listinfo/distutils-sig/].

Please enable JavaScript to view the comments powered by Disqus.

Comments powered by Disqus

 Copyright 2012-2016, The Python Software Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Distlib 0.2.3 documentation

Migrating from older APIs

This section has information on migrating from older APIs.

The pkg_resources resource API

Basic resource access

	resource_exists(package, resource_name)

	finder(package).find(resource_name) is not None

	resource_stream(package, resource_name)

	finder(package).find(resource_name).as_stream()

	resource_string(package, resource_name)

	finder(package).find(resource_name).bytes

	resource_isdir(package, resource_name)

	finder(package).find(resource_name).is_container

	resource_listdir(package, resource_name)

	finder(package).find(resource_name).resources

Resource extraction

	resource_filename(package, resource_name)

	finder(package).find(resource_name).file_path

	set_extraction_path(extraction_path)

	This has no direct analogue, but you can achieve equivalent results by
doing something like the following:

from distlib import resources

resources.cache = resources.Cache(extraction_path)

before accessing the file_path property of any Resource.
Note that if you have accessed the file_path property for a resource
before doing this, the cache may already have extracted files.

	cleanup_resources(force=False)

	This is not actually implemented in pkg_resources – it’s a no-op.
You could achieve the analogous result using:

from distlib import resources

not_removed = resources.cache.clear()

Provider interface

You can provide an XXXResourceFinder class which finds resources in custom
storage containers, and works like ResourceFinder. Although it shouldn’t
be necessary, you could also return a subclass of Resource from your
finders, to deal with custom requirements which aren’t catered for.

	get_cache_path(archive_name, names=())

	There’s no analogue for this, as you shouldn’t need to care about whether
particular resources are implemented in archives or not. If you need this
API, please give feedback with more information about your use cases.

	extraction_error()

	There’s no analogue for this. The Cache.get() method, which writes
a resource’s bytes to a file in the cache, will raise any exception caused
by underlying I/O. If you need to handle this in the cache layer, you can
subclass Cache and override get(). If that doesn’t work for
you, please give feedback with more information about your use cases.

	postprocess(tempname, filename)

	There’s no analogue for this. The Cache.get() method, which writes
a resource’s bytes to a file in the cache, can be overridden to perform any
custom post-processing. If that doesn’t work for you, please give feedback
with more information about your use cases.

The pkg_resources entry point API

Entry points in pkg_resources are equivalent to per-distribution exports
dictionary (see Exporting things from Distributions). The keys to the dictionary are just names
in a hierarchical namespace delineated with periods (like Python packages).
These keys are called groups in pkg_resources documentation, though that
term is a little ambiguous. In Eclipse, for example, they are called extension
point IDs, which is a little closer to the intended usage, but a bit of a
mouthful. In distlib, we’ll use the term category or export category.

In distlib, the implementation of exports is slightly different from
entry points of pkg_resources. A Distribution instance has an
exports attribute, which is a dictionary keyed by category and whose values
are dictionaries that map names to ExportEntry instances.

Below are the pkg_resources functions and how to achieve the equivalent
in distlib. In cases where the pkg_resources functions take distribution
names, in distlib you get the corresponding Distribution instance,
using:

dist = dist_path.get_distribution(distname)

and then ask that instance (or the dist_path instance) for the things you
need.

	load_entry_point(distname, groupname, name)

	dist.exports[groupname][name].value

	get_entry_info(distname, groupname, name)

	dist.exports[groupname][name]

	get_entry_map(distname, groupname=None)

	dist.exports or dist.exports[groupname]

	iter_entry_points(groupname, name=None)

	dist_path.get_exported_entries(groupname, name=None)

Please enable JavaScript to view the comments powered by Disqus.

Comments powered by Disqus

 Copyright 2012-2016, The Python Software Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Distlib 0.2.3 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	

 	__init__() (AggregatingLocator method)

 	

 	(Cache method)

 	(DependencyFinder method)

 	(DirectoryLocator method)

 	(DistPathLocator method)

 	(DistributionPath method)

 	(Locator method)

 	(PackageIndex method)

 	(PyPIJSONLocator method)

 	(PyPIRPCLocator method)

 	(ResourceCache method)

 	(ResourceFinder method)

 	(ScriptMaker method)

 	(SimpleScrapingLocator method)

 	(Wheel method)

A

 	

 	abi (Wheel attribute)

 	add_distribution() (DependencyGraph method)

 	add_edge() (DependencyGraph method)

 	add_launchers (ScriptMaker attribute)

 	add_missing() (DependencyGraph method)

 	

 	adjacency_list (DependencyGraph attribute)

 	AggregatingLocator (class in distlib.locators)

 	
 APIs

 	

 	PyPI

 	database

 	locators

 	manifest

 	metadata

 	package resources

 	script installation

 	version

 	wheel

 	arch (Wheel attribute)

 	as_stream() (Resource method)

B

 	

 	boundary (PackageIndex attribute)

 	build() (Wheel method)

 	
 building

 	

 	wheels

 	

 	buildver (Wheel attribute)

 	bytes (Resource attribute)

C

 	

 	Cache (class in distlib.util)

 	cache (in module distlib.resources)

 	

 	(in module distlib.util)

 	check_installed_files() (InstalledDistribution method)

 	clear_cache() (DistributionPath method)

 	

 	COMPATIBLE_TAGS (in module distlib.util)

 	
 Continuous integration status

 	

 	distlib

 	convert_url_to_download_info() (Locator method)

 	
 Coverage status

 	

 	distlib

D

 	

 	default_locator (in module distlib.locators)

 	DependencyFinder (class in distlib.locators)

 	DependencyGraph (built-in class)

 	digest (Distribution attribute)

 	digests (Distribution attribute)

 	DirectoryLocator (class in distlib.locators)

 	dirname (Wheel attribute)

 	

 	disable_cache() (DistributionPath method)

 	dist (ExportEntry attribute)

 	DistPathLocator (class in distlib.locators)

 	Distribution (built-in class)

 	DistributionPath (built-in class)

 	download_url (Distribution attribute)

 	download_urls (Distribution attribute)

E

 	

 	EggInfoDistribution (built-in class)

 	enable_cache() (DistributionPath method)

 	
 Environment markers

 	

 	evaluating

 	overriding

 	

 	exists (Wheel attribute)

 	ExportEntry (class in distlib.util)

 	exports (InstalledDistribution attribute)

F

 	

 	file_path (Resource attribute)

 	filename (Wheel attribute)

 	find() (DependencyFinder method)

 	

 	(ResourceFinder method)

 	

 	finder() (in module distlib.resources)

 	flags (ExportEntry attribute)

 	force (ScriptMaker attribute)

G

 	

 	get() (ResourceCache method)

 	get_all_distribution_names() (in module distlib.locators)

 	get_bytes() (ResourceFinder method)

 	get_cache_base() (in module distlib.util)

 	get_distribution() (DistributionPath method)

 	get_distribution_names() (Locator method)

 	get_distributions() (DistributionPath method)

 	

 	get_export_entry() (in module distlib.util)

 	get_exported_entries() (DistributionPath method)

 	get_project() (Locator method)

 	

 	(PyPIJSONLocator method)

 	(PyPIRPCLocator method)

 	get_size() (ResourceFinder method)

 	get_stream() (ResourceFinder method)

 	gpg (PackageIndex attribute)

 	gpg_home (PackageIndex attribute)

I

 	

 	info (Wheel attribute)

 	install() (Wheel method)

 	
 Installation

 	

 	distlib

 	InstalledDistribution (built-in class)

 	
 installing

 	

 	wheels

 	is_compatible() (in module distlib.util)

 	

 	(Wheel method)

 	

 	is_container (Resource attribute)

 	is_container() (ResourceFinder method)

 	is_mountable() (Wheel method)

 	is_stale() (ResourceCache method)

 	iterator() (ResourceFinder method)

L

 	

 	list_distinfo_files() (InstalledDistribution method)

 	list_installed_files() (EggInfoDistribution method)

 	

 	(InstalledDistribution method)

 	locate() (in module distlib.locators)

 	

 	(Locator method)

 	

 	Locator (class in distlib.locators)

 	locator (Distribution attribute)

M

 	

 	make() (ScriptMaker method)

 	make_multiple() (ScriptMaker method)

 	
 Manifest

 	

 	excluding files

 	excluding files globally

 	excluding files recursively

 	grafting directories

 	including files

 	including files globally

 	including files recursively

 	pruning directories

 	
 Markers

 	

 	evaluating

 	overriding

 	metadata (Distribution attribute)

 	

 	(EggInfoDistribution attribute)

 	(Wheel attribute)

 	

 	mirrors (PackageIndex attribute)

 	missing (DependencyGraph attribute)

 	
 modifying

 	

 	wheels

 	mount() (Wheel method)

N

 	

 	name (Distribution attribute)

 	

 	(EggInfoDistribution attribute)

 	(ExportEntry attribute)

 	(Wheel attribute)

P

 	

 	
 Package resources

 	

 	in .zip files

 	in the file system

 	PackageIndex (class in distlib.index)

 	password (PackageIndex attribute)

 	path (Resource attribute)

 	path_to_cache_dir() (in module distlib.util)

 	prefix (ExportEntry attribute)

 	

 	prefix_to_dir() (Cache method)

 	PyPIJSONLocator (class in distlib.locators)

 	PyPIRPCLocator (class in distlib.locators)

 	
 Python Enhancement Proposals

 	

 	PEP 241, [1], [2]

 	PEP 302, [1]

 	PEP 314, [1], [2]

 	PEP 345, [1], [2]

 	PEP 370

 	PEP 376, [1]

 	PEP 386, [1], [2], [3]

 	PEP 397

 	PEP 425, [1], [2]

 	PEP 426, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 	PEP 427, [1], [2], [3], [4], [5], [6]

 	PEP 440, [1], [2], [3]

 	pyver (Wheel attribute)

R

 	

 	read_exports() (InstalledDistribution method)

 	register() (PackageIndex method)

 	register_finder() (in module distlib.resources)

 	repr_node() (DependencyGraph method)

 	requested (InstalledDistribution attribute)

 	resolve() (in module distlib.util)

 	

 	Resource (class in distlib.resources)

 	ResourceCache (class in distlib.resources)

 	ResourceFinder (class in distlib.resources)

 	
 Resources

 	

 	in .zip files

 	in the file system

 	resources (Resource attribute)

 	reverse_list (DependencyGraph attribute)

S

 	

 	script_template (ScriptMaker attribute)

 	ScriptMaker (class in distlib.scripts)

 	
 Scripts

 	

 	avoid overwriting

 	generating variants

 	installing

 	specifying custom executables

 	specifying what to install

 	windowed

 	wrapping callables

 	search() (PackageIndex method)

 	set_mode (ScriptMaker attribute)

 	

 	SimpleScrapingLocator (class in distlib.locators)

 	size (Resource attribute)

 	source_dir (ScriptMaker attribute)

 	suffix (ExportEntry attribute)

T

 	

 	target_dir (ScriptMaker attribute)

 	
 Testing

 	

 	distlib

 	

 	
 Tests

 	

 	speeding up

 	Tutorial

U

 	

 	unmount() (Wheel method)

 	update() (Wheel method)

 	

 	upload_documentation() (PackageIndex method)

 	username (PackageIndex attribute)

V

 	

 	value (ExportEntry attribute)

 	verify() (Wheel method)

 	
 verifying

 	

 	wheels

 	

 	version (Distribution attribute)

 	

 	(EggInfoDistribution attribute)

 	(Wheel attribute)

 	
 Versions

 	

 	matching

 	overview

W

 	

 	Wheel (class in distlib.util)

 	
 wheels

 	

 	building

 	custom tags when building

 	installing

 	modifying

 	mounting

 	verifying

 	

 	write_exports() (InstalledDistribution method)

Z

 	

 	ZipResourceFinder (class in distlib.resources)

 Copyright 2012-2016, The Python Software Foundation.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		Distlib 0.2.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012-2016, The Python Software Foundation.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

