
Distlib Documentation
Release 0.2.2

Vinay Sajip

January 30, 2016

Contents

1 Overview 3
1.1 Distlib evolved out of packaging . 3
1.2 What was the problem with packaging? . 3
1.3 How Distlib can help . 4
1.4 How you can help . 4
1.5 Main features . 4
1.6 Python version and platform compatibility . 5
1.7 Project status . 5
1.8 Next steps . 5

2 Tutorial 7
2.1 Installation . 7
2.2 Testing . 7

2.2.1 PYPI availability . 8
2.3 First steps . 8

2.3.1 Using the database API . 8
Distribution paths . 8
Querying a path for distributions . 8
Including legacy distributions in the search results . 9
Distribution properties . 9
Exporting things from Distributions . 10

2.3.2 Distribution dependencies . 10
2.3.3 Using the locators API . 11

Overview . 11
Under the hood . 11

2.3.4 Using the index API . 12
Overview . 12
Registering a project . 13
Uploading a source distribution . 13
Uploading binary distributions . 13
Signing a distribution . 13
Downloading files . 14
Verifying signatures . 14
Uploading documentation . 15
Authentication . 15
Verifying HTTPS connections . 16
Saving a default configuration . 17
Searching PyPI . 17

i

2.3.5 Using the metadata and markers APIs . 19
Instantiating metadata . 19
Reading metadata from files and streams . 20
Writing metadata to paths and streams . 20
Using markers . 20

2.3.6 Using the resource API . 20
Access to resources in the file system . 21
Access to resources in the .zip files . 21
Iterating over resources . 22

2.3.7 Using the scripts API . 23
Specifying scripts to install . 23
Wrapping callables with scripts . 24
Specifying a custom executable for shebangs . 25
Generating variants of a script . 25
Avoiding overwriting existing scripts . 25
Generating windowed scripts on Windows . 25

2.3.8 Using the version API . 25
Overview . 25
Matching versions against constraints . 26

2.3.9 Using the wheel API . 27
Building wheels . 27
Customising tags during build . 27
Specifying a wheel’s version . 28
Installing from wheels . 28
Verifying wheels . 29
Modifying wheels . 29
Mounting wheels . 30
Using vanilla pip to build wheels for existing distributions on PyPI 30

2.3.10 Using the manifest API . 36
The include directive . 37
The exclude directive . 37
The global-include directive . 37
The global-exclude directive . 37
The recursive-include directive . 37
The recursive-exclude directive . 38
The graft directive . 38
The prune directive . 38

2.4 Next steps . 38

3 Distlib’s design 39
3.1 The locators API . 39

3.1.1 The problem we’re trying to solve . 39
3.1.2 A minimal solution . 40

Locating distributions . 40
Finding dependencies . 41

3.2 The index API . 41
3.2.1 The problem we’re trying to solve . 41
3.2.2 A minimal solution . 42

3.3 The resources API . 43
3.3.1 The problem we’re trying to solve . 43
3.3.2 A minimal solution . 44
3.3.3 Dealing with the requirement for access via file system files 46

3.4 The scripts API . 46
3.4.1 The problem we’re trying to solve . 46

ii

3.4.2 A minimal solution . 47
Flag formats . 48

3.5 The version API . 48
3.5.1 The problem we’re trying to solve . 48
3.5.2 A minimal solution . 49

Versions . 50
Matchers . 50
Version schemes . 51

3.6 The wheel API . 52
3.6.1 The problem we’re trying to solve . 52
3.6.2 A minimal solution . 53

3.7 Next steps . 54

4 API Reference 55
4.1 The distlib.database package . 55

4.1.1 Classes . 55
4.2 The distlib.resources package . 58

4.2.1 Attributes . 58
4.2.2 Functions . 59
4.2.3 Classes . 59

4.3 The distlib.scripts package . 61
4.3.1 Classes . 61

4.4 The distlib.locators package . 63
4.4.1 Classes . 63
4.4.2 Functions . 66
4.4.3 Variables . 66

4.5 The distlib.index package . 66
4.5.1 Classes . 66

4.6 The distlib.util package . 69
4.6.1 Classes . 69
4.6.2 Functions . 70

4.7 The distlib.wheel package . 71
4.7.1 Attributes . 71
4.7.2 Classes . 71
4.7.3 Functions . 74
4.7.4 Attributes . 74

4.8 Next steps . 74

5 Migrating from older APIs 75
5.1 The pkg_resources resource API . 75

5.1.1 Basic resource access . 75
5.1.2 Resource extraction . 75
5.1.3 Provider interface . 76

5.2 The pkg_resources entry point API . 76

iii

iv

Distlib Documentation, Release 0.2.2

Welcome to the documentation for distlib, a library of packaging functionality which is intended to be used
as the basis for third-party packaging tools. Using a common layer will improve interoperability and consistency
of user experience across those tools which use the library.

Please note: this documentation is a work in progress.

Contents 1

Distlib Documentation, Release 0.2.2

2 Contents

CHAPTER 1

Overview

Start here for all things distlib.

1.1 Distlib evolved out of packaging

Distlib is a library which implements low-level functions that relate to packaging and distribution of Python software.
It consists in part of the functions in the packaging Python package, which was intended to be released as part of
Python 3.3, but was removed shortly before Python 3.3 entered beta testing.

1.2 What was the problem with packaging?

The packaging software just wasn’t ready for inclusion in the Python standard library. The amount of work needed
to get it into the desired state was too great, given the number of people able to work on the project, the time they
could devote to it, and the Python 3.3 release schedule.

The approach taken by packaging was seen to be a good one: to ensure interoperability and consistency between
different tools in the packaging space by defining standards for data formats through PEPs, and to do away with the ad
hoc nature of installation encouraged by the distutils approach of using executable Python code in setup.py.
Where custom code was needed, it could be provided in a standardised way using installation hooks.

While some very good work was done in defining PEPs to codify some of the best practices, packaging suffered
from some drawbacks, too:

• Not all the PEPs may have been functionally complete, because some important use cases were not considered
– for example, built (binary) distributions for Windows.

• It continued the command-based design of distutils, which had resulted in distutils being difficult to
extend in a consistent, easily understood, and maintainable fashion.

• Some important features required by distribution authors were not considered – for example:

– Access to data files stored in Python packages.

– Support for plug-in extension points.

– Support for native script execution on Windows.

These features are supported by third-party tools (like setuptools / Distribute) using
pkg_resources, entry points and console scripts.

3

Distlib Documentation, Release 0.2.2

• There were a lot of rough edges in the packaging implementation, both in terms of bugs and in terms of
incompletely implemented features. This can be seen (with the benefit of hindsight) as due to the goals being
set too ambitiously; the project developers bit off more than they could chew.

1.3 How Distlib can help

The idea behind Distlib is expressed in this python-dev mailing-list post, though a different name was suggested
for the library. Basically, Distlib contains the implementations of the packaging PEPs and other low-level features
which relate to packaging, distribution, and deployment of Python software. If Distlib can be made genuinely useful,
then it is possible for third-party packaging tools to transition to using it. Their developers and users then benefit
from standardised implementation of low-level functions, time saved by not having to reinvent wheels, and improved
interoperability between tools.

1.4 How you can help

If you have some time and the inclination to improve the state of Python packaging, then you can help by trying
out Distlib, raising issues where you find problems, contributing feedback and/or patches to the implementation,
documentation, and underlying PEPs.

1.5 Main features

Distlib currently offers the following features:

• The package distlib.database, which implements a database of installed distributions, as defined by
PEP 376, and distribution dependency graph logic. Support is also provided for non-installed distributions (i.e.
distributions registered with metadata on an index like PyPI), including the ability to scan for dependencies and
building dependency graphs.

• The package distlib.index, which implements an interface to perform operations on an index, such as
registering a project, uploading a distribution or uploading documentation. Support is included for verifying
SSL connections (with domain matching) and signing/verifying packages using GnuPG.

• The package distlib.metadata, which implements distribution metadata as defined by PEP 426, PEP
345, PEP 314 and PEP 241.

• The package distlib.markers, which implements environment markers as defined by PEP 426.

• The package distlib.manifest, which implements lists of files used in packaging source distributions.

• The package distlib.locators, which allows finding distributions, whether on PyPI (XML-RPC or via
the “simple” interface), local directories or some other source.

• The package distlib.resources, which allows access to data files stored in Python packages, both in the
file system and in .zip files.

• The package distlib.scripts, which allows installing of scripts with adjustment of shebang lines and
support for native Windows executable launchers.

• The package distlib.version, which implements version specifiers as defined by PEP 440 / PEP 426,
but also support for working with “legacy” versions (setuptools/distribute) and semantic versions.

• The package distlib.wheel, which provides support for building and installing from the Wheel format for
binary distributions (see PEP 427).

4 Chapter 1. Overview

http://mail.python.org/pipermail/python-dev/2012-September/121716.html
https://www.python.org/dev/peps/pep-0376
https://www.python.org/dev/peps/pep-0426
https://www.python.org/dev/peps/pep-0345
https://www.python.org/dev/peps/pep-0345
https://www.python.org/dev/peps/pep-0314
https://www.python.org/dev/peps/pep-0241
https://www.python.org/dev/peps/pep-0426
https://www.python.org/dev/peps/pep-0440
https://www.python.org/dev/peps/pep-0426
https://www.python.org/dev/peps/pep-0427

Distlib Documentation, Release 0.2.2

• The package distlib.util, which contains miscellaneous functions and classes which are useful in packag-
ing, but which do not fit neatly into one of the other packages in distlib.* The package implements enhanced
globbing functionality such as the ability to use ** in patterns to specify recursing into subdirectories.

1.6 Python version and platform compatibility

Distlib is intended to be used on any Python version >= 2.6 and is tested on Python versions 2.6, 2.7, 3.1, 3.2, and 3.3
on Linux, Windows, and Mac OS X (not all versions are tested on all platforms, but are expected to work correctly).

1.7 Project status

The project has reached alpha status in its development: there is a test suite and it has been exercised on Windows,
Ubuntu and Mac OS X. To work with the project, you can download a release from PyPI, or clone the source repository
or download a tarball from it.

Coverage results are available at:

http://www.red-dove.com/distlib/coverage/

Continuous integration test results are available at:

https://travis-ci.org/vsajip/distlib/

The source repository for the project is on BitBucket:

https://bitbucket.org/pypa/distlib/

You can leave feedback by raising a new issue on the issue tracker (BitBucket registration not necessary, but recom-
mended).

1.8 Next steps

You might find it helpful to look at the Tutorial, or the API Reference.

1.6. Python version and platform compatibility 5

https://pypi.python.org/pypi/distlib/
http://www.red-dove.com/distlib/coverage/
https://travis-ci.org/vsajip/distlib/
https://bitbucket.org/pypa/distlib/
https://bitbucket.org/pypa/distlib/issues/new

Distlib Documentation, Release 0.2.2

6 Chapter 1. Overview

CHAPTER 2

Tutorial

2.1 Installation

Distlib is a pure-Python library. You should be able to install it using:

pip install distlib

for installing distlib into a virtualenv or other directory where you have write permissions. On Posix platforms,
you may need to invoke using sudo if you need to install distlib in a protected location such as your system
Python’s site-packages directory.

2.2 Testing

A full test suite is included with distlib. To run it, you’ll need to download the source distribution, unpack it
and run python setup.py test in the top-level directory of the package. You can of course also run python
setup.py install to install the package (perhaps invoking with sudo if you need to install to a protected
location).

Continuous integration test results are available at:

https://travis-ci.org/vsajip/distlib/

Coverage results are available at:

https://coveralls.io/r/vsajip/distlib

Note that the actual coverage is higher than that shown, because coverage under Windows is not included in the above
coverage figures.

Note that the index tests are configured, by default, to use a local test server, though they can be configured to run
against PyPI itself. This local test server is not bundled with distlib, but is available from:

https://raw.github.com/vsajip/pypiserver/standalone/pypi-server-standalone.py

This is a slightly modified version of Ralf Schmitt’s pypiserver. To use, the script needs to be copied to the tests
folder of the distlib distribution.

If the server script is not available, the tests which use it will be skipped. Naturally, this will also affect the coverage
statistics.

7

https://travis-ci.org/vsajip/distlib/
https://coveralls.io/r/vsajip/distlib
https://raw.github.com/vsajip/pypiserver/standalone/pypi-server-standalone.py
https://github.com/schmir/pypiserver

Distlib Documentation, Release 0.2.2

2.2.1 PYPI availability

If PyPI is unavailable or slow, then some of the tests can fail or become painfully slow. To skip tests that might be
sometimes slow, set the SKIP_SLOW environment variable:

$ SKIP_SLOW=1 python setup.py test

on Posix, or:

C:\> set SKIP_SLOW=1
C:\> python setup.py test

on Windows.

2.3 First steps

For now, we just list how to use particular parts of the API as they take shape.

2.3.1 Using the database API

You can use the distlib.database package to access information about installed distributions. This information
is available through the following classes:

• DistributionPath, which represents a set of distributions installed on a path.

• Distribution, which represents an individual distribution, conforming to recent packaging PEPs (PEP 440,
PEP 426, PEP 386, PEP 376, PEP 345, PEP 314 and PEP 241).

• EggInfoDistribution, which represents a legacy distribution in egg format.

Distribution paths

The Distribution and EggInfoDistribution classes are normally not instantiated directly; rather, they are
returned by querying DistributionPath for distributions. To create a DistributionPath instance, you can
do

>>> from distlib.database import DistributionPath
>>> dist_path = DistributionPath()

Querying a path for distributions

In this most basic form, dist_path will provide access to all non-legacy distributions on sys.path. To get these
distributions, you invoke the get_distributions() method, which returns an iterable. Let’s try it:

>>> list(dist_path.get_distributions())
[]

This may seem surprising if you’ve just started looking at distlib, as you won’t have any non-legacy distributions.

8 Chapter 2. Tutorial

https://www.python.org/dev/peps/pep-0440
https://www.python.org/dev/peps/pep-0426
https://www.python.org/dev/peps/pep-0386
https://www.python.org/dev/peps/pep-0376
https://www.python.org/dev/peps/pep-0345
https://www.python.org/dev/peps/pep-0314
https://www.python.org/dev/peps/pep-0241

Distlib Documentation, Release 0.2.2

Including legacy distributions in the search results

To include distributions created and installed using setuptools or distribute, you need to create the
DistributionPath by specifying an additional keyword argument, like so:

>>> dist_path = DistributionPath(include_egg=True)

and then you’ll get a less surprising result:

>>> len(list(dist_path.get_distributions()))
77

The exact number returned will be different for you, of course. You can ask for a particular distribution by name, using
the get_distribution() method:

>>> dist_path.get_distribution('setuptools')
<EggInfoDistribution u'setuptools' 0.6c11 at '/usr/lib/python2.7/dist-packages/setuptools.egg-info'>

If you want to look at a specific path other than sys.path, you specify it as a positional argument to the
DistributionPath constructor:

>>> from pprint import pprint
>>> special_dists = DistributionPath(['tests/fake_dists'], include_egg=True)
>>> pprint([d.name for d in special_dists.get_distributions()])
['babar',
'choxie',
'towel-stuff',
'grammar',
'truffles',
'coconuts-aster',
'nut',
'bacon',
'banana',
'cheese',
'strawberry']

or, if you leave out egg-based distributions:

>>> special_dists = DistributionPath(['tests/fake_dists'])
>>> pprint([d.name for d in special_dists.get_distributions()])
['babar',
'choxie',
'towel-stuff',
'grammar']

Distribution properties

Once you have a Distribution instance, you can use it to get more information about the distribution. For
example:

• The metadata attribute gives access to the distribution’s metadata (see Using the metadata and markers APIs
for more information).

• The name_and_version attribute shows the name and version in the format name (X.Y).

• The key attribute holds the distribution’s name in lower-case, as you generally want to search for distributions
without regard to case sensitivity.

2.3. First steps 9

Distlib Documentation, Release 0.2.2

Exporting things from Distributions

Each distribution has a dictionary of exports. The exports dictionary is functionally equivalent to “entry points” in
distribute / setuptools.

The keys to the dictionary are just names in a hierarchical namespace delineated with periods (like Python packages,
so we’ll refer to them as pkgnames in the following discussion). The keys indicate categories of information which
the distribution’s author wishes to export. In each such category, a distribution may publish one or more entries.

The entries can be used for many purposes, and can point to callable code or data. A common purpose is for publishing
callables in the distribution which adhere to a particular protocol.

To give a concrete example, the Babel library for internationalisation support provides a mechanism for extracting,
from a variety of sources, message text to be internationalised. Babel itself provides functionality to extract messages
from e.g. Python and JavaScript source code, but helpfully offers a mechanism whereby providers of other sources of
message text can provide their own extractors. It does this by providing a category ’babel.extractors’, under
which other software can register extractors for their sources. The Jinja2 template engine, for example, makes use
of this to provide a message extractor for Jinja2 templates. Babel itself registers its own extractors under the same
category, so that a unified view of all extractors in a given Python environment can be obtained, and Babel’s extractors
are treated by other parts of Babel in exactly the same way as extractors from third parties.

Any installed distribution can offer up values for any category, and a set of distributions (such as the set of installed
distributions on sys.path) conceptually has an aggregation of these values.

The values associated with a category are a list of strings with the format:

name = prefix [":" suffix] ["[" flags "]"]

where name, prefix, and suffix are pkgnames. suffix and flags are optional and flags follow the
description in Flag formats.

Any installed distribution can offer up values for any category, and a set of distributions (such as the set of installed
distributions on sys.path) conceptually has an aggregation of these values.

For callables, the prefix is the package or module name which contains the callable, suffix is the path to the
callable in the module, and flags can be used for any purpose determined by the distribution author (for example, the
extras feature in distribute / setuptools).

This entry format is used in the distlib.scripts package for installing scripts based on Python callables.

Note: In PEP 426, the flags value is limited to a single flag representing an extra (optional set of dependencies,
for optional features of a distribution).

2.3.2 Distribution dependencies

You can use the distlib.locators package to locate the dependencies that a distribution has. The
distlib.database package has code which allow you to analyse the relationships between a set of distributions:

• make_graph(), which generates a dependency graph from a list of distributions.

• get_dependent_dists(), which takes a list of distributions and a specific distribution in that list, and
returns the distributions that are dependent on that specific distribution.

• get_required_dists(), which takes a list of distributions and a specific distribution in that list, and
returns the distributions that are required by that specific distribution.

The graph returned by make_graph() is an instance of DependencyGraph.

10 Chapter 2. Tutorial

http://babel.edgewall.org/
http://jinja2.pocoo.org/
https://www.python.org/dev/peps/pep-0426

Distlib Documentation, Release 0.2.2

2.3.3 Using the locators API

Overview

To locate a distribution in an index, we can use the locate() function. This returns a potentially downloadable
distribution (in the sense that it has a download URL – of course, there are no guarantees that there will actually be
a downloadable resource at that URL). The return value is an instance of distlib.database.Distribution
which can be queried for any distributions it requires, so that they can also be located if desired. Here is a basic
example:

>>> from distlib.locators import locate
>>> flask = locate('flask')
>>> flask
<Distribution Flask (0.10.1) [https://pypi.python.org/packages/source/F/Flask/Flask-0.10.1.tar.gz]>
>>> dependencies = [locate(r) for r in flask.run_requires]
>>> from pprint import pprint
>>> pprint(dependencies)
[<Distribution Werkzeug (0.9.1) [https://pypi.python.org/packages/source/W/Werkzeug/Werkzeug-0.9.1.tar.gz]>,
<Distribution Jinja2 (2.7) [https://pypi.python.org/packages/source/J/Jinja2/Jinja2-2.7.tar.gz]>,
<Distribution itsdangerous (0.21) [https://pypi.python.org/packages/source/i/itsdangerous/itsdangerous-0.21.tar.gz]>]

>>>

The values in the run_requires property are just strings. Here’s another example, showing a little more detail:

>>> authy = locate('authy')
>>> authy.run_requires
set(['httplib2 (>= 0.7, < 0.8)', 'simplejson'])
>>> authy
<Distribution authy (1.0.0) [http://pypi.python.org/packages/source/a/authy/authy-1.0.0.tar.gz]>
>>> deps = [locate(r) for r in authy.run_requires]
>>> pprint(deps)
[<Distribution httplib2 (0.7.7) [http://pypi.python.org/packages/source/h/httplib2/httplib2-0.7.7.zip]>,
<Distribution simplejson (3.3.0) [http://pypi.python.org/packages/source/s/simplejson/simplejson-3.3.0.tar.gz]>]

>>>

Note that the constraints on the dependencies were honoured by locate().

Under the hood

Under the hood, locate() uses locators. Locators are a mechanism for finding distributions from a range of sources.
Although the pypi subpackage has been copied from distutils2 to distlib, there may be benefits in a higher-
level API, and so the distlib.locators package has been created as an experiment. Locators are objects which
locate distributions. A locator instance’s get_project() method is called, passing in a project name: The method
returns a dictionary containing information about distribution releases found for that project. The keys of the returned
dictionary are versions, and the values are instances of distlib.database.Distribution.

The following locators are provided:

• DirectoryLocator – this is instantiated with a base directory and will look for archives in the file system
tree under that directory. Name and version information is inferred from the filenames of archives, and the
amount of information returned about the download is minimal. The locator searches all subdirectories by
default, but can be set to only look in the specified directory by setting the recursive keyword argument to
False.

• PyPIRPCLocator. – This takes a base URL for the RPC service and will locate packages using PyPI’s
XML-RPC API. This locator is a little slow (the scraping interface seems to work faster) and case-sensitive. For
example, searching for ’flask’ will throw up no results, but you get the expected results when searching from
’Flask’. This appears to be a limitation of the underlying XML-RPC API. Note that 20 versions of a project

2.3. First steps 11

Distlib Documentation, Release 0.2.2

necessitate 41 network calls (one to get the versions, and two more for each version – one to get the metadata,
and another to get the downloads information).

• PyPIJSONLocator. – This takes a base URL for the JSON service and will locate packages using PyPI’s
JSON API. This locator is case-sensitive. For example, searching for ’flask’ will throw up no results, but
you get the expected results when searching from ’Flask’. This appears to be a limitation of the underlying
JSON API. Note that unlike the XML-RPC service, only non-hidden releases will be returned.

• SimpleScrapingLocator – this takes a base URL for the site to scrape, and locates packages using a
similar approach to the PackageFinder class in pip, or as documented in the setuptools documentation
as the approach used by easy_install.

• DistPathLocator – this takes a DistributionPath instance and locates installed distributions. This
can be used with AggregatingLocator to satisfy requirements from installed distributions before looking
elsewhere for them.

• JSONLocator – this uses an improved JSON metadata schema and returns data on all versions of a distribu-
tion, including dependencies, using a single network request.

• AggregatingLocator – this takes a list of other aggregators and delegates finding projects to them. It can
either return the first result found (i.e. from the first aggregator in the list provided which returns a non-empty
result), or a merged result from all the aggregators in the list.

There is a default locator, available at distlib.locators.default_locator.

The locators package also contains a function, get_all_distribution_names(), which retrieves the
names of all distributions registered on PyPI:

>>> from distlib.locators import get_all_distribution_names
>>> names = get_all_distribution_names()
>>> len(names)
31905
>>>

This is implemented using the XML-RPC API.

Apart from JSONLocator, none of the locators currently returns enough metadata to allow dependency resolution
to be carried out, but that is a result of the fact that metadata relating to dependencies are not indexed, and would
require not just downloading the distribution archives and inspection of contained metadata files, but potentially also
introspecting setup.py! This is the downside of having vital information only available via keyword arguments to the
setup() call: hopefully, a move to fully declarative metadata will facilitate indexing it and allowing the provision
of improved features.

The locators will skip binary distributions other than wheels. (.egg files are currently treated as binary distributions).

The PyPI locator classes don’t yet support the use of mirrors, but that can be added in due course – once the basic
functionality is working satisfactorily.

2.3.4 Using the index API

You can use the distlib.index package to perform operations relating to a package index compatible with PyPI.
This includes things like registering a project, uploading a distribution or uploading documentation.

Overview

You access index functionality through an instance of the PackageIndex class. This is instantiated with the URL
of the repository (which can be omitted if you want to use PyPI itself):

12 Chapter 2. Tutorial

Distlib Documentation, Release 0.2.2

>>> from distlib.index import PackageIndex
>>> index = PackageIndex()
>>> index.url
'http://pypi.python.org/pypi'

To use a local test server, you might do this:

>>> index = PackageIndex('http://localhost:8080/')

Registering a project

Registering a project can be done using a Metadata instance which holds the index metadata used for registering. A
simple example:

>>> from distlib.metadata import Metadata
>>> metadata = Metadata()
>>> metadata.name = 'tatterdemalion'
>>> metadata.version = '0.1'
>>> # other fields omitted
>>> response = index.register(metadata)

The register() method returns an HTTP response, such as might be returned by a call to urlopen. If an error
occurs, a HTTPError will be raised. Otherwise, the response.code should be 200.

Uploading a source distribution

To upload a source distribution, you need to do the following as a minimum:

>>> metadata = ... # get a populated Metadata instance
>>> response = index.upload_file(metadata, archive_name)

The upload_file() method returns an HTTP response or, in case of error, raises an HTTPError.

Uploading binary distributions

When uploading binary distributions, you need to specify the file type and Python version, as in the following example:

>>> response = index.upload_file(metadata, archive_name,
... filetype='bdist_dumb',
... pyversion='2.6')

Signing a distribution

To sign a distribution, you will typically need GnuPG. The default implementation looks for gpg or gpg2 on the path,
but if not available there, you can can explicitly specify an absbolute path indicating where the signing program is to
be found:

>>> index.gpg = '/path/to/gpg'

Once this is set, you can sign the archive before uploading, as follows:

>>> response = index.upload_file(metadata, archive_name,
... signer='Test User',
... sign_password='secret',

keystore='/path/to/keys')

2.3. First steps 13

Distlib Documentation, Release 0.2.2

As an alternative to passing the keystore with each call, you can specify that in an instance attribute:

>>> index.gpg_home = '/path/to/keys'

The keystore is a directory which contains the GnuPG key database (files like pubring.gpg, secring.gpg,
and trustdb.gpg).

When you sign a distribution, both the distribution and the signature are uploaded to the index.

Downloading files

The PackageIndex class contains a utility method which allows you to download distributions (and other files,
such as signatures):

>>> index.download_file(url, destfile, digest=None, reporthook=None)

This is similar in function to urlretrieve() in the standard library. Provide a digest if you want the call to
check that the has digest of the downloaded file matches a specific value: if not provided, no matching is done. The
value passed can just be a plain string in the case of an MD5 digest or, if you want to specify the hashing algorithm to
use, specify a tuple such as (’sha1’, ’0123456789abcdef...’). The hashing algorithm must be one that’s
supported by the hashlib module.

Benefits to using this method over plain urlretrieve() are:

• It will use the ssl_verifier, if set, to ensure that the download is coming from where you think it is (see
Verifying HTTPS connections).

• It will compute the digest as it downloads, saving you from having to read the whole of the downloaded file just
to compute its digest.

Note that the url you download from doesn’t actually need to be on the index – in theory, it could be from some other
site. Note that if you have an ssl_verifier set on the index, it will perform its checks according to whichever
url you supply – whether it’s a resource on the index or not.

Verifying signatures

For any archive downloaded from an index, you can retrieve any signature by just appending .asc to the path portion
of the download URL for the archive, and downloading that. The index class offers a verify_signature()
method for validating a signature. If you have files ‘good.bin’, ‘bad.bin’ which are different from each other, and
‘good.bin.asc’ has the signature for ‘good.bin’, then you can verify signatures like this:

>>> index.verify_signature('good.bin.asc', 'good.bin', '/path/to/keys')
True
>>> index.verify_signature('good.bin.asc', 'bad.bin', '/path/to/keys')
False

The last argument, which is optional, specifies a directory which holds the GnuPG keys used for verification – the
keystore. Instead of specifying the keystore location in each call, you can specify the location in an instance attribute:

>>> index.gpg_home = '/path/to/keys'

If you do this, you don’t need to pass the keystore location.

Note that if you don’t have the gpg or gpg2 programs on the path, you may need to specify the location of the verifier
program explicitly:

>>> index.gpg = '/path/to/gpg'

14 Chapter 2. Tutorial

http://docs.python.org/library/hashlib.html#module-hashlib

Distlib Documentation, Release 0.2.2

Some caveats about verified signatures

In order to be able to perform signature verification, you’ll have to ensure that the public keys of whoever signed those
distributions are in your key store. However, having these keys shouldn’t give you a false sense of security; unless
you can be sure that those keys actually belong to the people or organisations they purport to represent, the signature
has no real value, even if it is verified without error. For you to be able to trust a key, it would need to be signed by
someone you trust, who vouches for it – and this requires there to be either a signature from a valid certifying authority
(e.g. Verisign, Thawte etc.) or a Web of Trust around the keys that you want to rely on.

An index may itself countersign distributions (so it deals with the keys of the distribution publishers, but you need only
deal with the public signing key belonging to the index). If you trust the index, you can trust the verified signature if
it’s signed by the index.

Uploading documentation

To upload documentation, you need to specify the metadata and the directory which is the root of the
documentation (typically, if you use Sphinx to build your documentation, this will be something like
<project>/docs/_build/html):

>>> response = index.upload_documentation(metadata, doc_dir)

The upload_documentation() method returns an HTTP response or, in case of error, raises an HTTPError.
The call will zip up the entire contents of the passed directory doc_dir and upload the zip file to the index.

Authentication

Operations which update the index (all of the above) will require authenticated requests. You can specify a username
and password to use for requests sent to the index:

>>> index.username = 'test'
>>> index.password = 'secret'

For your convenience, these will be automatically read from any .pypirc file which you have; if it contains entries
for multiple indexes, a repository key in .pypirc must match index.url to identify which username and
password are to be read from .pypirc. Note that to ensure compatibility, distlib uses distutils code to read
the .pypirc configuration. Thus, given the .pypirc file:

[distutils]
index-servers =

pypi
test

[pypi]
username: me
password: my_strong_password

[test]
repository: http://localhost:8080/
username: test
password: secret

you would see the following:

>>> index = PackageIndex()
>>> index.username
'me'

2.3. First steps 15

http://wikipedia.org/wiki/Web_of_trust

Distlib Documentation, Release 0.2.2

>>> index.password
'my_strong_password'
>>> index = PackageIndex('http://localhost:8080/')
>>> index.username
'test'
>>> index.password
'secret'

Verifying HTTPS connections

Although Python has full support for SSL, it does not, by default, verify SSL connections to servers. That’s because in
order to do so, a set of certificates which certify the identity of the server needs to be provided (see the relevant Python
documentation for details).

Support for verifying SSL connections is provided in distlib through a handler, distlib.util.HTTPSHandler.
To use it, set the ssl_verifier attribute of the index to a suitably configured instance. For example:

>>> from distlib.util import HTTPSHandler
>>> verifier = HTTPSHandler('/path/to/root/certs.pem')
>>> index.ssl_verifier = verifier

By default, the handler will attempt to match domains, including wildcard matching. This means that (for example)
you access foo.org or www.foo.org which have a certificate for *.foo.org, the domains will match. If the
domains don’t match, the handler raises a CertificateError (a subclass of ValueError).

Domain mismatches can, however, happen for valid reasons. Say a hosting server bar.com hosts www.foo.org,
which we are trying to access using SSL. If the server holds a certificate for www.foo.org, it will present it to the
client, as long as both support Server Name Indication (SNI). While distlib supports SNI where Python supports
it, Python 2.x does not include SNI support. For this or some other reason , you may wish to turn domain matching
off. To do so, instantiate the verifier like this:

>>> verifier = HTTPSHandler('/path/to/root/certs.pem', False)

Ensuring that only HTTPS connections are made

You may want to ensure that traffic is only HTTPS for a particular interaction with a server – for example:

• Deal with a Man-In-The-Middle proxy server which listens on port 443 but talks HTTP rather than HTTPS

• Deal with situations where an index page obtained via HTTPS contains links with a scheme of http rather than
https.

To do this, instead of using HTTPSHandler as shown above, use the HTTPSOnlyHandler class instead, which
disallows any HTTP traffic. It’s used in the same way as HTTPSHandler:

>>> from distlib.util import HTTPSOnlyHandler
>>> verifier = HTTPSOnlyHandler('/path/to/root/certs.pem')
>>> index.ssl_verifier = verifier

Note that with this handler, you can’t make any HTTP connections at all - it will raise URLError if you try.

Getting hold of root certificates

At the time of writing, you can find a file in the appropriate format on the cURL website. Just download the
cacert.pem file and pass the path to it when instantiating your verifier.

16 Chapter 2. Tutorial

http://docs.python.org/3/library/ssl.html#certificates
http://docs.python.org/3/library/ssl.html#certificates
http://wikipedia.org/wiki/Server_Name_Indication
http://curl.haxx.se/docs/caextract.html

Distlib Documentation, Release 0.2.2

Saving a default configuration

If you don’t have a .pypirc file but want to save one, you can do this by setting the username and password and
calling the save_configuration() method:

>>> index = PackageIndex()
>>> index.username = 'fred'
>>> index.password = 'flintstone'
>>> index.save_configuration()

This will use distutils code to save a default .pypirc file which specifies a single index – PyPI – with the
specified username and password.

Searching PyPI

You can use the search() method of PackageIndex to search for distributions on PyPI:

>>> index = PackageIndex()
>>> from pprint import pprint
>>> pprint(index.search('tatterdema'))
[{'_pypi_ordering': 0,

'name': 'tatterdemalion',
'summary': 'A dummy distribution',
'version': '0.1.0'}]

If a string is specified, just the name is searched for. Alternatively, you can specify a dictionary of attributes to search
for, along with values to match. For example:

>>> pprint(index.search({'summary': 'dummy'}))
[{'_pypi_ordering': 5,

'name': 'collective.lorem',
'summary': 'A package that provides dummy content generation.',
'version': '0.2.3'},

{'_pypi_ordering': 7,
'name': 'collective.loremipsum',
'summary': 'Creates dummy content with populated Lorem Ipsum.',
'version': '0.8'},

{'_pypi_ordering': 1,
'name': 'cosent.dummypackage',
'summary': 'A dummy package for buildtools testing',
'version': '0.4'},

{'_pypi_ordering': 0,
'name': 'django-dummyimage',
'summary': 'Dynamic Dummy Image Generator For Django!',
'version': '0.1.1'},

{'_pypi_ordering': 1,
'name': 'django-plainpasswordhasher',
'summary': 'Dummy (plain text) password hashing for Django.',
'version': '0.2'},

{'_pypi_ordering': 2,
'name': 'django-plainpasswordhasher',
'summary': 'Dummy (plain text) password hashing for Django.',
'version': '0.3'},

{'_pypi_ordering': 1,
'name': 'dummycache',
'summary': 'A dummy in-memory cache for development and testing. (Not recommended for production use.)',
'version': '0.0.2'},

{'_pypi_ordering': 0,

2.3. First steps 17

Distlib Documentation, Release 0.2.2

'name': 'dummy-txredis',
'summary': 'Dummy txRedis client and factory.',
'version': '0.5'},

{'_pypi_ordering': 7,
'name': 'eea.eggmonkeytesttarget',
'summary': 'A dummy package to test eea.eggmonkey',
'version': '5.7'},

{'_pypi_ordering': 8,
'name': 'invewrapper',
'summary': 'dummy/transitional package that depends on "pew"',
'version': '0.1.8'},

{'_pypi_ordering': 0,
'name': 'monoprocessing',
'summary': 'A dummy implementation of multiprocessing.Pool',
'version': '0.1'},

{'_pypi_ordering': 0,
'name': 'myFun',
'summary': 'This is a dummy function which prints given list data.',
'version': '1.0.0'},

{'_pypi_ordering': 0,
'name': 'ReadableDict-a-dict-without-brackets',
'summary': 'provides a dummy implementation of a dict without brackets',
'version': '0.0'},

{'_pypi_ordering': 4,
'name': 'setuptools_dummy',
'summary': 'Setuptools Dummy Filefinder',
'version': '0.1.0.4'},

{'_pypi_ordering': 0,
'name': 'tatterdemalion',
'summary': 'A dummy distribution',
'version': '0.1.0'}]

If you specify multiple attributes, then the search returns the intersection of matches – an and operation:

>>> pprint(index.search({'summary': 'dummy', 'name': 'ta'}))
[{'_pypi_ordering': 7,

'name': 'eea.eggmonkeytesttarget',
'summary': 'A dummy package to test eea.eggmonkey',
'version': '5.7'},

{'_pypi_ordering': 0,
'name': 'tatterdemalion',
'summary': 'A dummy distribution',
'version': '0.1.0'}]

If you want a union of matches – an or operation – specify a second argument to the PackageIndex.search()
method with the value ’or’:

>>> pprint(index.search({'version': '2013.9', 'name': 'pytzp'}, 'or'))
[{'_pypi_ordering': 65,

'name': 'pytz',
'summary': 'World timezone definitions, modern and historical',
'version': '2013.9'},

{'_pypi_ordering': 2,
'name': 'pytzpure',
'summary': 'A pure-Python version of PYTZ (timezones).',
'version': '0.2.4'}]

The search functionality makes use of PyPI’s XML-RPC interface, so it will only work for indexes which supply a
compatible implementation. The following search attributes are currently supported:

18 Chapter 2. Tutorial

Distlib Documentation, Release 0.2.2

• name

• version

• stable_version

• author

• author_email

• maintainer

• maintainer_email

• home_page

• license

• summary

• description

• keywords

• platform

• download_url

• classifiers (list of classifier strings)

• project_url

• docs_url (URL of the pythonhosted.org docs if they’ve been supplied)

2.3.5 Using the metadata and markers APIs

The metadata API is exposed through a Metadata class. This class can read and write metadata files complying with
any of the defined versions: 1.0 (PEP 241), 1.1 (PEP 314), 1.2 (PEP 345) and 2.0 (PEP 426). It implements methods
to parse and write metadata files.

Instantiating metadata

You can simply instantiate a Metadata instance and start populating it:

>>> from distlib.metadata import Metadata
>>> md = Metadata()
>>> md.name = 'foo'
>>> md.version = '1.0'

An instance so created may not be valid unless it has some minimal properties which meet certain constraints, as
specified in PEP 426.

These constraints aren’t applicable to legacy metadata. Therefore, when creating Metadata instances to deal with
such metadata, you can specify the scheme keyword when creating the instance:

>>> legacy_metadata = Metadata(scheme='legacy')

The term ‘legacy’ is somewhat ambiguous, as it could refer to either the metadata format (legacy => key-value, non-
legacy =< JSON as described in PEP 426) or the version specification (legacy => setuptools-compatible, non-legacy
=> as described in PEP 440). In this case, it refers to the version scheme and not the metadata format. Legacy
metadata is also subject to constraints, but they are less stringent (for example, the name and version number are less
constrained).

2.3. First steps 19

https://www.python.org/dev/peps/pep-0241
https://www.python.org/dev/peps/pep-0314
https://www.python.org/dev/peps/pep-0345
https://www.python.org/dev/peps/pep-0426
http://www.python.org/dev/peps/pep-0426/#core-metadata
https://www.python.org/dev/peps/pep-0426
https://www.python.org/dev/peps/pep-0440

Distlib Documentation, Release 0.2.2

Whether dealing with current or legacy metadata. an instance’s validate() method can be called to ensure that the
metadata has no missing or invalid data. This raises a DistlibException (either MetadataMissingError
or MetadataInvalidError) if the metadata isn’t valid.

You can initialise an instance with a dictionary which conforms to PEP 426 using the following form:

>>> metadata = Metadata(mapping=a_dictionary)

Reading metadata from files and streams

The Metadata class can be instantiated with the path of the metadata file. Here’s an example with legacy metadata:

>>> from distlib.metadata import Metadata
>>> metadata = Metadata(path='PKG-INFO')
>>> metadata.name
'CLVault'
>>> metadata.version
'0.5'
>>> metadata.run_requires
['keyring']

Instead of using the path keyword argument to specify a file location, you can also specify a fileobj keyword
argument to specify a file-like object which contains the data.

Writing metadata to paths and streams

Writing metadata can be done using the write method:

>>> metadata.write(path='/to/my/pydist.json')

You can also specify a file-like object to write to, using the fileobj keyword argument.

Using markers

Environment markers are implemented in the distlib.markers package and accessed via a single function,
interpret().

See PEP 426 for more information about environment markers. The interpret() function takes a string argument
which represents a Boolean expression, and returns either True or False:

>>> from distlib.markers import interpret
>>> interpret('python_version >= "1.0"')
True

You can pass in a context dictionary which is checked for values before the environment:

>>> interpret('python_version >= "1.0"', {'python_version': '0.5'})
False

You won’t normally need to work with markers in this way – they are dealt with by the Metadata and
Distribution logic when needed.

2.3.6 Using the resource API

You can use the distlib.resources package to access data stored in Python packages, whether in the file system
or .zip files. Consider a package which contains data alongside Python code:

20 Chapter 2. Tutorial

https://www.python.org/dev/peps/pep-0426
http://www.python.org/dev/peps/pep-0426/#environment-markers

Distlib Documentation, Release 0.2.2

foofoo
-- bar
| -- bar_resource.bin
| -- baz.py
| -- __init__.py
-- foo_resource.bin
-- __init__.py
-- nested

-- nested_resource.bin

Access to resources in the file system

You can access these resources like so:

>>> from distlib.resources import finder
>>> f = finder('foofoo')
>>> r = f.find('foo_resource.bin')
>>> r.is_container
False
>>> r.size
10
>>> r.bytes
b'more_data\n'
>>> s = r.as_stream()
>>> s.read()
b'more_data\n'
>>> s.close()
>>> r = f.find('nested')
>>> r.is_container
True
>>> r.resources
{'nested_resource.bin'}
>>> r = f.find('nested/nested_resource.bin')
>>> r.size
12
>>> r.bytes
b'nested data\n'
>>> f = finder('foofoo.bar')
>>> r = f.find('bar_resource.bin')
>>> r.is_container
False
>>> r.bytes
b'data\n'

Access to resources in the .zip files

It works the same way if the package is in a .zip file. Given the zip file foo.zip:

$ unzip -l foo.zip
Archive: foo.zip

Length Date Time Name
--------- ---------- ----- ----

10 2012-09-20 21:34 foo/foo_resource.bin
8 2012-09-20 21:42 foo/__init__.py

14 2012-09-20 21:42 foo/bar/baz.py
8 2012-09-20 21:42 foo/bar/__init__.py

2.3. First steps 21

Distlib Documentation, Release 0.2.2

5 2012-09-20 21:33 foo/bar/bar_resource.bin
--------- -------

45 5 files

You can access its resources as follows:

>>> import sys
>>> sys.path.append('foo.zip')
>>> from distlib.resources import finder
>>> f = finder('foo')
>>> r = f.find('foo_resource.bin')
>>> r.is_container
False
>>> r.size
10
>>> r.bytes
'more_data\n'

and so on.

Iterating over resources

You can iterate over resources as shown in the following example:

>>> from distlib.resources import finder
>>> f = finder('foofoo')
>>> iterator = f.iterator('')
>>> for r in iterator: print('%-20s %s' % (r.name, r.is_container))
...

True
foo_resource.bin False
__init__.py False
bar True
bar/bar_resource.bin False
bar/baz.py False
bar/__init__.py False
nested True
nested/nested_resource.bin False

It works with zipped resources, too:

>>> import sys
>>> sys.path.append('foo.zip')
>>> from distlib.resources import finder
>>> f = finder('foo')
>>> iterator = f.iterator('')
>>> for r in iterator: print('%-20s %s' % (r.name, r.is_container))
...

True
foo_resource.bin False
__init__.py False
bar True
bar/bar_resource.bin False
bar/baz.py False
bar/__init__.py False

22 Chapter 2. Tutorial

Distlib Documentation, Release 0.2.2

2.3.7 Using the scripts API

You can use the distlib.scripts API to install scripts. Installing scripts is slightly more involved than just
copying files:

• You may need to adjust shebang lines in scripts to point to the interpreter to be used to run scripts. This is
important in virtual environments (venvs), and also in other situations where you may have multiple Python
installations on a single computer.

• On Windows, on systems where the PEP 397 launcher isn’t installed, it is not easy to ensure that the correct
Python interpreter is used for a script. You may wish to install native Windows executable launchers which run
the correct interpreter, based on a shebang line in the script.

Specifying scripts to install

To install scripts, create a ScriptMaker instance, giving it the source and target directories for scripts:

>>> from distlib.scripts import ScriptMaker
>>> maker = ScriptMaker(source_dir, target_dir)

You can then install a script foo.py like this:

>>> maker.make('foo.py')

The string passed to make can take one of the following forms:

• A filename, relative to the source directory for scripts, such as foo.py or subdir/bar.py.

• A reference to a callable, given in the form:

name = some_package.some_module:some_callable [flags]

where the flags part is optional.

For more information about flags, see Flag formats.

Note that this format is exactly the same as for export entries in a distribution (see Exporting things from
Distributions).

When this form is passed to the ScriptMaker.make() method, a Python stub script is created with the
appropriate shebang line and with code to load and call the specified callable with no arguments, returning its
value as the return code from the script.

You can pass an optional options dictionary to the make() method. This is meant to contain options which
control script generation. There are two options currently in use:

gui: This Boolean value, if True, indicates on Windows that a Windows executable launcher (rather than a
launcher which is a console application) should be used. (This only applies if add_launchers is true.)

interpreter_args: If provided, this should be a list of strings which are added to the shebang line follow-
ing the interpreter. If there are values with spaces, you will need to surround them with double quotes.

Note: Use of this feature may affect portability, since POSIX does not standardise how these arguments are
passed to the interpreter (see https://en.wikipedia.org/wiki/Shebang_line#Portability for more information).

For example, you can pass {’gui’: True} to generate a windowed script.

2.3. First steps 23

https://www.python.org/dev/peps/pep-0397
https://en.wikipedia.org/wiki/Shebang_line#Portability

Distlib Documentation, Release 0.2.2

Wrapping callables with scripts

Let’s see how wrapping a callable works. Consider the following file:

$ cat scripts/foo.py
def main():

print('Hello from foo')

def other_main():
print('Hello again from foo')

we can try wrapping ``main`` and ``other_main`` as callables::

>>> from distlib.scripts import ScriptMaker
>>> maker = ScriptMaker('scripts', '/tmp/scratch')
>>> maker.make_multiple(('foo = foo:main', 'bar = foo:other_main'))
['/tmp/scratch/foo', '/tmp/scratch/bar']
>>>

we can inspect the resulting scripts. First, ``foo``::

$ ls /tmp/scratch/
bar foo
$ cat /tmp/scratch/foo
#!/usr/bin/python

if __name__ == '__main__':
import sys, re

def _resolve(module, func):
__import__(module)
mod = sys.modules[module]
parts = func.split('.')
result = getattr(mod, parts.pop(0))
for p in parts:

result = getattr(result, p)
return result

try:
sys.argv[0] = re.sub('-script.pyw?$', '', sys.argv[0])

func = _resolve('foo', 'main')
rc = func() # None interpreted as 0

except Exception as e: # only supporting Python >= 2.6
sys.stderr.write('%s\n' % e)
rc = 1

sys.exit(rc)

The other script, bar, is different only in the essentials:

$ diff /tmp/scratch/foo /tmp/scratch/bar
16c16
< func = _resolve('foo', 'main')

> func = _resolve('foo', 'other_main')

24 Chapter 2. Tutorial

Distlib Documentation, Release 0.2.2

Specifying a custom executable for shebangs

You may need to specify a custom executable for shebang lines. To do this, set the executable attribute of a
ScriptMaker instance to the absolute Unicode path of the executable which you want to be written to the shebang
lines of scripts. If not specified, the executable running the ScriptMaker code is used. If the value has spaces, you
should surround it with double quotes.

Generating variants of a script

When installing a script foo, it is not uncommon to want to install version-specific variants such as foo3 or
foo-3.2. You can control exactly which variants of the script get written through the ScriptMaker instance’s
variants attribute. This defaults to set((’’, ’X.Y’)), which means that by default a script foo would be
installed as foo and foo-3.2 under Python 3.2. If the value of the variants attribute were set((’’, ’X’,
’X.Y’)) then the foo script would be installed as foo, foo3 and foo-3.2 when run under Python 3.2.

Avoiding overwriting existing scripts

In some scenarios, you might overwrite existing scripts when you shouldn’t. For example, if you use Python
2.7 to install a distribution with script foo in the user site (see PEP 370), you will write (on POSIX) scripts
~/.local/bin/foo and ~/.local/bin/foo-2.7. If you then install the same distribution with Python
3.2, you would write (on POSIX) scripts ~/.local/bin/foo and ~/.local/bin/foo-3.2. However, by
overwriting the ~/.local/bin/foo script, you may prevent verification or removal of the 2.7 installation to fail,
because the overwritten file may be different (and so have a different hash from what was computed during the 2.7
installation).

To control overwriting of generated scripts this way, you can use the clobber attribute of a ScriptMaker instance.
This is set to False by default, which prevents overwriting; to force overwriting, set it to True.

Generating windowed scripts on Windows

The make() and make_multiple() methods take an optional second options argument, which can be used
to control script generation. If specified, this should be a dictionary of options. Currently, only the value for the
gui key in the dictionary is inspected: if True, it generates scripts with .pyw extensions (rather than .py) and,
if add_launchers is specified as True in the ScriptMaker instance, then (on Windows) a windowed native
executable launcher is created (otherwise, the native executable launcher will be a console application).

2.3.8 Using the version API

Overview

The NormalizedVersion class implements a PEP 426 compatible version:

>>> from distlib.version import NormalizedVersion
>>> v1 = NormalizedVersion('1.0')
>>> v2 = NormalizedVersion('1.0a1')
>>> v3 = NormalizedVersion('1.0b1')
>>> v4 = NormalizedVersion('1.0c1')
>>> v5 = NormalizedVersion('1.0.post1')
>>>

These sort in the expected order:

2.3. First steps 25

https://www.python.org/dev/peps/pep-0370
https://www.python.org/dev/peps/pep-0426

Distlib Documentation, Release 0.2.2

>>> v2 < v3 < v4 < v1 < v5
True
>>>

You can’t pass any old thing as a version number:

>>> NormalizedVersion('foo')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "distlib/version.py", line 49, in __init__
self._parts = parts = self.parse(s)

File "distlib/version.py", line 254, in parse
def parse(self, s): return normalized_key(s)

File "distlib/version.py", line 199, in normalized_key
raise UnsupportedVersionError(s)

distlib.version.UnsupportedVersionError: foo
>>>

Matching versions against constraints

The NormalizedMatcher is used to match version constraints against versions:

>>> from distlib.version import NormalizedMatcher
>>> m = NormalizedMatcher('foo (1.0b1)')
>>> m
NormalizedMatcher('foo (1.0b1)')
>>> [m.match(v) for v in v1, v2, v3, v4, v5]
[False, False, True, False, False]
>>>

Specifying ’foo (1.0b1)’ is equivalent to specifying ’foo (==1.0b1)’, i.e. only the exact version is
matched. You can also specify inequality constraints:

>>> m = NormalizedMatcher('foo (<1.0c1)')
>>> [m.match(v) for v in v1, v2, v3, v4, v5]
[False, True, True, False, False]
>>>

and multiple constraints:

>>> m = NormalizedMatcher('foo (>= 1.0b1, <1.0.post1)')
>>> [m.match(v) for v in v1, v2, v3, v4, v5]
[True, False, True, True, False]
>>>

You can do exactly the same thing as above with setuptools/ distribute version numbering
(use LegacyVersion and LegacyMatcher) or with semantic versioning (use SemanticVersion and
SemanticMatcher). However, you can’t mix and match versions of different types:

>>> from distlib.version import SemanticVersion, LegacyVersion
>>> nv = NormalizedVersion('1.0.0')
>>> lv = LegacyVersion('1.0.0')
>>> sv = SemanticVersion('1.0.0')
>>> lv == sv
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "distlib/version.py", line 61, in __eq__
self._check_compatible(other)

File "distlib/version.py", line 58, in _check_compatible

26 Chapter 2. Tutorial

Distlib Documentation, Release 0.2.2

raise TypeError('cannot compare %r and %r' % (self, other))
TypeError: cannot compare LegacyVersion('1.0.0') and SemanticVersion('1.0.0')
>>> nv == sv
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "distlib/version.py", line 61, in __eq__
self._check_compatible(other)

File "distlib/version.py", line 58, in _check_compatible
raise TypeError('cannot compare %r and %r' % (self, other))
TypeError: cannot compare NormalizedVersion('1.0.0') and SemanticVersion('1.0.0')
>>>

2.3.9 Using the wheel API

You can use the distlib.wheel package to build and install from files in the Wheel format, defined in PEP 427.

Building wheels

Building wheels is straightforward:

from distlib.wheel import Wheel

wheel = Wheel()

Set the distribution's identity
wheel.name = 'name_of_distribution'
wheel.version = '0.1'

Indicate where the files to go in the wheel are to be found
paths = {

'prefix': '/path/to/installation/prefix',
'purelib': '/path/to/purelib', # only one of purelib
'platlib': '/path/to/platlib', # or platlib should be set
'scripts': '/path/to/scripts',
'headers': '/path/to/headers',
'data': '/path/to/data',

}

wheel.dirname = '/where/you/want/the/wheel/to/go'
Now build
wheel.build(paths)

If the ’data’, ’headers’ and ’scripts’ keys are absent, or point to paths which don’t exist, nothing will
be added to the wheel for these categories. The ’prefix’ key and one of ’purelib’ or ’platlib’ must be
provided, and the paths referenced should exist.

Customising tags during build

By default, the build() method will use default tags depending on whether or not the build is a pure-Python build:

• For a pure-Python build, the pyver will be set to pyXY where XY is the version of the building Python. The
abi tag will be none and the arch tag will be any.

• For a build which is not pure-Python (i.e. contains C code), the pyver will be set to e.g. cpXY, and the abi
and arch tags will be set according to the building Python.

2.3. First steps 27

https://www.python.org/dev/peps/pep-0427

Distlib Documentation, Release 0.2.2

If you want to override these default tags, you can pass a tags parameter to the build() method which has the tags
you want to declare. For example, for a pure build where we know that the code in the wheel will be compatible with
the major version of the building Python:

from wheel import PYVER
tags = {

'pyver': [PYVER[:-1], PYVER],
}
wheel.build(paths, tags)

This would set the pyver tags to be pyX.pyXY where X and Y relate to the building Python. You can similarly pass
values using the abi and arch keys in the tags dictionary.

Specifying a wheel’s version

You can also specify a particular “Wheel-Version” to be written to the wheel metadata of a wheel you’re building.
Simply pass a (major, minor) tuple in the wheel_version keyword argument to build(). If not specified, the
most recent version supported is written.

Installing from wheels

Installing from wheels is similarly straightforward. You just need to indicate where you want the files in the wheel to
be installed:

from distlib.wheel import Wheel
from distlib.scripts import ScriptMaker

wheel = Wheel('/path/to/my_dist-0.1-py32-none-any.whl')

Indicate where the files in the wheel are to be installed to.
All the keys should point to writable paths.
paths = {

'prefix': '/path/to/installation/prefix',
'purelib': '/path/to/purelib',
'platlib': '/path/to/platlib',
'scripts': '/path/to/scripts',
'headers': '/path/to/headers',
'data': '/path/to/data',

}

maker = ScriptMaker(None, None)
You can specify a custom executable in script shebang lines, whether
or not to install native executable launchers, whether to do a dry run
etc. by setting attributes on the maker, wither when creating it or
subsequently.

Now install. The method accepts optional keyword arguments:
#
- A ``warner`` argument which, if specified, should be a callable that
will be called with (software_wheel_version, file_wheel_version) if
they differ. They will both be in the form (major_ver, minor_ver).
#
- A ``lib_only`` argument which indicates that only the library portion
of the wheel should be installed - no scripts, header files or
non-package data.

28 Chapter 2. Tutorial

Distlib Documentation, Release 0.2.2

wheel.install(paths, maker)

Only one of the purelib or platlib paths will actually be written to (assuming that they are different, which isn’t
often the case). Which one it is depends on whether the wheel metadata declares that the wheel contains pure Python
code.

Verifying wheels

You can verify that a wheel’s contents match the declared contents in the wheel’s RECORD entry, by calling the
verify() method. This will raise a DistlibException if a size or digest mismatch is found.

Modifying wheels

Note: In an ideal world one would not need to modify wheels, but in the short term there might be a need to do so
(for example, to add dependency information which is missing). If you are working with wheels on your own projects,
you shouldn’t use the method described here, as you will have full control of the wheels you build yourself. However,
if you are working with third party wheels which you don’t build yourself but you need to modify in some way, then
the approach described below might be useful.

You can update existing wheels with distlib by calling the update() method of a wheel. This is called as
follows:

modified = wheel.update(modifier, dest_dir, **kwargs)

where the modifier is a callable which you specify, and kwargs are options you want to pass to it (currently, the
update() method passes kwargs unchanged to the modifier). The dest_dir argument indicates where you
want any new wheel to be written - it is optional and if not specified, the existing wheel will be overwritten.

The update() method extracts the entire contents of the wheel to a temporary location, and then calls modifier
as follows:

modified = modifier(path_map, **kwargs)

where path_map is a dictionary mapping archive paths to the location of the corresponding extracted archive entry,
and kwargs is whatever was passed to the update method. If the modifier returns True, a new wheel is built
from the (possibly updated) contents of path_map and its path name. The passed path_map will contain all of the
wheel’s entries other than the RECORD entry (which will be recreated if a new wheel is built).

For example, if you wanted to add numpy as a dependency in a scipy wheel, you might do something like this:

def add_numpy_dependency(path_map, **kwargs):
mdpath = path_map['scipy-0.11.dist-info/pydist.json']
md = Metadata(path=mdpath)
md.add_requirements(['numpy'])
md.write(path=mdpath)
return True

wheel = Wheel('scipy-0.11-py27-abi3-linux_x86_64.whl')
wheel.update(add_numpy_dependency)

In the above example, the modifier doesn’t actually use kwargs, but you could pass useful information which can be
used to control the modifier’s operation. For example, you might make the function work with other distributions than
scipy, or other versions of scipy:

2.3. First steps 29

Distlib Documentation, Release 0.2.2

def add_numpy_dependency(path_map, **kwargs):
name = kwargs.get('name', 'scipy')
version = kwargs.get('version', '0.11')
key = '%s-%s.dist-info/pydist.json' % (name, version)
mdpath = path_map[key]
md = Metadata(path=mdpath)
md.add_requirements(['numpy'])
md.write(path=mdpath)
return True

Mounting wheels

One of Python’s perhaps under-used features is zipimport, which gives the ability to import Python source from
.zip files. Since wheels are .zip files, they can sometimes be used to provide functionality without needing to be
installed. Whereas .zip files contain no convention for indicating compatibility with a particular Python, wheels do
contain this compatibility information. Thus, it is possible to check if a wheel can be directly imported from, and
the wheel support in distlib allows you to take advantage of this using the mount() and unmount() methods.
When you mount a wheel, its absolute path name is added to sys.path, allowing the Python code in it to be imported.
(A DistlibException is raised if the wheel isn’t compatible with the Python which calls the mount() method.)

The mount() method takes an optional keyword parameter append which defaults to False, meaning the a
mounted wheel’s pathname is added to the beginning of sys.path. If you pass True, the pathname is appended to
sys.path.

The mount() method goes further than just enabling Python imports – any C extensions in the wheel are also made
available for import. For this to be possible, the wheel has to be built with additional metadata about extensions – a
JSON file called EXTENSIONSwhich serialises an extension mapping dictionary. This maps extension module names
to the names in the wheel of the shared libraries which implement those modules.

Running unmount() on the wheel removes its absolute pathname from sys.path and makes its C extensions, if
any, also unavailable for import.

Note: The C extension mounting functionality may not work in all cases, though it should work in a useful subset of
cases. Use with care. Note that extension information is currently only available in wheels built using distil – for
wheels built using e.g. pip, this note will not apply, because C extensions will never be available for import.

• There might be subtle differences in binary compatibility between the extension and the running Python, because
the compatibility tag framework currently does not capture all the relevant ABI information. This is a situation
which can be expected to improve over time.

• If the extension uses custom dynamically linked libraries which are bundled with the extension, it may not be
found by the dynamic loading machinery, for reasons that are platform-dependent. In such cases, you should
have a good understanding of how dynamic loading works on your platforms, before taking advantage of this
feature.

Using vanilla pip to build wheels for existing distributions on PyPI

Although work is afoot to add wheel support to pip, you don’t need this to build wheels for existing PyPI distributions
if you use distlib. The following script shows how you can use an unpatched, vanilla pip to build wheels:

#!/usr/bin/env python
-*- coding: utf-8 -*-
#
Copyright (C) 2013 Vinay Sajip. License: MIT

30 Chapter 2. Tutorial

Distlib Documentation, Release 0.2.2

#

import logging
import optparse # for 2.6
import os
import re
import shutil
import subprocess
import sys
import tempfile

logger = logging.getLogger('wheeler')

from distlib.compat import configparser, filter
from distlib.database import DistributionPath, Distribution, make_graph
from distlib.locators import (JSONLocator, SimpleScrapingLocator,

AggregatingLocator, DependencyFinder)
from distlib.manifest import Manifest
from distlib.metadata import Metadata
from distlib.util import parse_requirement, get_package_data
from distlib.wheel import Wheel

EGG_INFO_RE = re.compile(r'(-py\d\.\d)?\.egg-info', re.I)

INSTALLED_DISTS = DistributionPath(include_egg=True)

def get_requirements(data):
lines = []
for line in data.splitlines():

line = line.strip()
if not line or line[0] == '#':

continue
lines.append(line)

reqts = []
extras = {}
result = {'install': reqts, 'extras': extras}
for line in lines:

if line[0] != '[':
reqts.append(line)

else:
i = line.find(']', 1)
if i < 0:

raise ValueError('unrecognised line: %r' % line)
extra = line[1:i]
extras[extra] = reqts = []

return result

def convert_egg_info(libdir, prefix, options):
files = os.listdir(libdir)
ei = list(filter(lambda d: d.endswith('.egg-info'), files))[0]
olddn = os.path.join(libdir, ei)
di = EGG_INFO_RE.sub('.dist-info', ei)
newdn = os.path.join(libdir, di)
os.rename(olddn, newdn)
if options.compatible:

renames = {}

2.3. First steps 31

Distlib Documentation, Release 0.2.2

else:
renames = {

'entry_points.txt': 'EXPORTS',
}

excludes = set([
'SOURCES.txt', # of no interest in/post WHEEL
'installed-files.txt', # replaced by RECORD, so not needed
'requires.txt', # added to METADATA, so not needed
'PKG-INFO', # replaced by METADATA
'not-zip-safe', # not applicable

])
files = os.listdir(newdn)
metadata = mdname = reqts = None
for oldfn in files:

pn = os.path.join(newdn, oldfn)
if oldfn in renames:

os.rename(pn, os.path.join(newdn, renames[oldfn]))
else:

if oldfn == 'requires.txt':
with open(pn, 'r') as f:

reqts = get_requirements(f.read())
elif oldfn == 'PKG-INFO':

metadata = Metadata(path=pn)
pd = get_package_data(metadata.name, metadata.version)
metadata = Metadata(mapping=pd['index-metadata'])
mdname = os.path.join(newdn, 'pydist.json')

if oldfn in excludes or not options.compatible:
os.remove(pn)

if metadata:
Use Metadata 1.2 or later
metadata.provides += ['%s (%s)' % (metadata.name,

metadata.version)]
Update if not set up by get_package_data
if reqts and not metadata.run_requires:

metadata.dependencies = reqts
metadata.write(path=mdname)

manifest = Manifest(os.path.dirname(libdir))
manifest.findall()
paths = manifest.allfiles
dp = DistributionPath([libdir])
dist = next(dp.get_distributions())
dist.write_installed_files(paths, prefix)

def install_dist(distname, workdir, options):
pfx = '--install-option='
purelib = pfx + '--install-purelib=%s/purelib' % workdir
platlib = pfx + '--install-platlib=%s/platlib' % workdir
headers = pfx + '--install-headers=%s/headers' % workdir
scripts = pfx + '--install-scripts=%s/scripts' % workdir
data = pfx + '--install-data=%s/data' % workdir
Use the pip adjacent to sys.executable, if any (for virtualenvs)
d = os.path.dirname(sys.executable)
files = filter(lambda o: o in ('pip', 'pip.exe'), os.listdir(d))
if not files:

prog = 'pip'
else:

prog = os.path.join(d, next(files))

32 Chapter 2. Tutorial

Distlib Documentation, Release 0.2.2

cmd = [prog, 'install',
'--no-deps', '--quiet',
'--index-url', 'http://pypi.python.org/simple/',
'--timeout', '3', '--default-timeout', '3',
purelib, platlib, headers, scripts, data, distname]

result = {
'scripts': os.path.join(workdir, 'scripts'),
'headers': os.path.join(workdir, 'headers'),
'data': os.path.join(workdir, 'data'),

}
print('Pipping %s ...' % distname)
p = subprocess.Popen(cmd, shell=False, stdout=sys.stdout,

stderr=subprocess.STDOUT)
stdout, _ = p.communicate()
if p.returncode:

raise ValueError('pip failed to install %s:\n%s' % (distname, stdout))
for dn in ('purelib', 'platlib'):

libdir = os.path.join(workdir, dn)
if os.path.isdir(libdir):

result[dn] = libdir
break

convert_egg_info(libdir, workdir, options)
dp = DistributionPath([libdir])
dist = next(dp.get_distributions())
md = dist.metadata
result['name'] = md.name
result['version'] = md.version
return result

def build_wheel(distname, options):
result = None
r = parse_requirement(distname)
if not r:

print('Invalid requirement: %r' % distname)
else:

dist = INSTALLED_DISTS.get_distribution(r.name)
if dist:

print('Can\'t build a wheel from already-installed '
'distribution %s' % dist.name_and_version)

else:
workdir = tempfile.mkdtemp() # where the Wheel input files will live
try:

paths = install_dist(distname, workdir, options)
paths['prefix'] = workdir
wheel = Wheel()
wheel.name = paths.pop('name')
wheel.version = paths.pop('version')
wheel.dirname = options.destdir
wheel.build(paths)
result = wheel

finally:
shutil.rmtree(workdir)

return result

def main(args=None):
parser = optparse.OptionParser(usage='%prog [options] requirement [requirement ...]')

2.3. First steps 33

Distlib Documentation, Release 0.2.2

parser.add_option('-d', '--dest', dest='destdir', metavar='DESTDIR',
default=os.getcwd(), help='Where you want the wheels '
'to be put.')

parser.add_option('-n', '--no-deps', dest='deps', default=True,
action='store_false',
help='Don\'t build dependent wheels.')

options, args = parser.parse_args(args)
options.compatible = True # may add flag to turn off later
if not args:

parser.print_usage()
else:

Check if pip is available; no point in continuing, otherwise
try:

with open(os.devnull, 'w') as f:
p = subprocess.call(['pip', '--version'], stdout=f, stderr=subprocess.STDOUT)

except Exception:
p = 1

if p:
print('pip appears not to be available. Wheeler needs pip to '

'build wheels.')
return 1

if options.deps:
collect all the requirements, including dependencies
u = 'http://pypi.python.org/simple/'
locator = AggregatingLocator(JSONLocator(),

SimpleScrapingLocator(u, timeout=3.0),
scheme='legacy')

finder = DependencyFinder(locator)
wanted = set()
for arg in args:

r = parse_requirement(arg)
if not r.constraints:

dname = r.name
else:

dname = '%s (%s)' % (r.name, ', '.join(r.constraints))
print('Finding the dependencies of %s ...' % arg)
dists, problems = finder.find(dname)
if problems:

print('There were some problems resolving dependencies '
'for %r.' % arg)

for _, info in problems:
print(' Unsatisfied requirement %r' % info)

wanted |= dists
want_ordered = True # set to False to skip ordering
if not want_ordered:

wanted = list(wanted)
else:

graph = make_graph(wanted, scheme=locator.scheme)
slist, cycle = graph.topological_sort()
if cycle:

Now sort the remainder on dependency count.
cycle = sorted(cycle, reverse=True,

key=lambda d: len(graph.reverse_list[d]))
wanted = slist + cycle

get rid of any installed distributions from the list
for w in list(wanted):

dist = INSTALLED_DISTS.get_distribution(w.name)

34 Chapter 2. Tutorial

Distlib Documentation, Release 0.2.2

if dist or w.name in ('setuptools', 'distribute'):
wanted.remove(w)
s = w.name_and_version
print('Skipped already-installed distribution %s' % s)

converted wanted list to pip-style requirements
args = ['%s==%s' % (dist.name, dist.version) for dist in wanted]

Now go build
built = []
for arg in args:

wheel = build_wheel(arg, options)
if wheel:

built.append(wheel)
if built:

if options.destdir == os.getcwd():
dest = ''

else:
dest = ' in %s' % options.destdir

print('The following wheels were built%s:' % dest)
for wheel in built:

print(' %s' % wheel.filename)

if __name__ == '__main__':
logging.basicConfig(format='%(levelname)-8s %(name)s %(message)s',

filename='wheeler.log', filemode='w')
try:

rc = main()
except Exception as e:

print('Failed - sorry! Reason: %s\nPlease check the log.' % e)
logger.exception('Failed.')
rc = 1

sys.exit(rc)

This script, wheeler.py, is also available here. Note that by default, it downloads dependencies of any distribution
you specify and builds separate wheels for each distribution. It’s smart about not repeating work if dependencies are
common across multiple distributions you specify:

$ python wheeler.py sphinx flask
Finding the dependencies of sphinx ...
Finding the dependencies of flask ...
Pipping Jinja2==2.6 ...
Pipping docutils==0.10 ...
Pipping Pygments==1.6 ...
Pipping Werkzeug==0.8.3 ...
Pipping Sphinx==1.1.3 ...
Pipping Flask==0.9 ...
The following wheels were built:

Jinja2-2.6-py27-none-any.whl
docutils-0.10-py27-none-any.whl
Pygments-1.6-py27-none-any.whl
Werkzeug-0.8.3-py27-none-any.whl
Sphinx-1.1.3-py27-none-any.whl
Flask-0.9-py27-none-any.whl

Note that the common dependency – Jinja2 – was only built once.

You can opt to not build dependent wheels by specifying --no-deps on the command line.

2.3. First steps 35

https://gist.github.com/vsajip/4988471

Distlib Documentation, Release 0.2.2

Note that the script also currently uses an http: URL for PyPI – this may need to change to an https: URL in the future.

Note: It can’t be used to build wheels from existing distributions, as pip will either refuse to install to custom
locations (because it views a distribution as already installed), or will try to upgrade and thus uninstall the existing
distribution, even though installation is requested to a custom location (and uninstallation is not desirable). For best
results, run it in a fresh venv:

$ my_env/bin/python wheeler.py some_dist

It should use the venv’s pip, if one is found.

2.3.10 Using the manifest API

You can use the distlib.manifest API to construct lists of files when creating distributions. This functionality
is an improved version of the equivalent functionality in distutils, where it was not a public API.

You can create instances of the Manifest class to work with a set of files rooted in a particular directory:

>>> from distlib.manifest import Manifest
>>> manifest = Manifest('/path/to/my/sources')

This sets the base attribute to the passed in root directory. You can add one or multiple files using names relative to
the base directory:

>>> manifest.add('abc')
>>> manifest.add_many(['def', 'ghi'])

As a result of the above two statements, the manifest will consist of ’/path/to/my/sources/abc’,
’/path/to/my/sources/def’ and ’/path/to/my/sources/ghi’. No check is made regarding the ex-
istence of these files.

You can get all the files below the base directory of the manifest:

>>> manifest.findall()

This will populate the allfiles attribute of manifest with a list of all files in the directory tree rooted at the base.
However, the manifest is still empty:

>>> manifest.files
>>> set()

You can populate the manifest – the files attribute – by running a number of directives, using the
process_directive() method. Each directive will either add files from allfiles to files, or remove
files from allfiles if they were added by a previous directive. A directive is a string which must have a specific
syntax: malformed lines will result in a DistlibException being raised. The following directives are available:
they are compatible with the syntax of MANIFEST.in files processed by distutils.

Consider the following directory tree:

testsrc/
-- keep
| -- keep.txt
-- LICENSE
-- README.txt
-- subdir

-- lose
| -- lose.txt
-- somedata.txt

36 Chapter 2. Tutorial

Distlib Documentation, Release 0.2.2

-- subsubdir
-- somedata.bin

This will be used to illustrate how the directives work, in the following sections.

The include directive

This takes the form of the word include (case-sensitive) followed by a number of file-name patterns (as used in
MANIFEST.in in distutils). All files in allfiles‘ matching the patterns (considered relative to the base
directory) are added to files. For example:

>>> manifest.process_directive('include R*.txt LIC* keep/*.txt')

This will add README.txt, LICENSE and keep/keep.txt to the manifest.

The exclude directive

This takes the form of the word exclude (case-sensitive) followed by a number of file-name patterns (as used
in MANIFEST.in in distutils). All files in files‘ matching the patterns (considered relative to the base
directory) are removed from files. For example:

>>> manifest.process_directive('exclude LIC*')

This will remove ‘LICENSE’ from the manifest, as it was added in the section above.

The global-include directive

This works just like include, but will add matching files at all levels of the directory tree:

>>> manifest.process_directive('global-include *.txt')

This will add subdir/somedata.txt and subdir/lose/lose.txt from the manifest.

The global-exclude directive

This works just like exclude, but will remove matching files at all levels of the directory tree:

>>> manifest.process_directive('global-exclude l*.txt')

This will remove subdir/lose/lose.txt from the manifest.

The recursive-include directive

This directive takes a directory name (relative to the base) and a set of patterns. The patterns are used as in
global-include, but only for files under the specified directory:

>>> manifest.process_directive('recursive-include subdir l*.txt')

This will add subdir/lose/lose.txt back to the manifest.

2.3. First steps 37

Distlib Documentation, Release 0.2.2

The recursive-exclude directive

This works like recursive-include, but excludes matching files under the specified directory if they were al-
ready added by a previous directive:

>>> manifest.process_directive('recursive-exclude subdir lose*')

This will remove subdir/lose/lose.txt from the manifest again.

The graft directive

This directive takes the name of a directory (relative to the base) and copies all the names under it from allfiles
to files.

The prune directive

This directive takes the name of a directory (relative to the base) and removes all the names under it from files.

2.4 Next steps

You might find it helpful to look at information about Distlib’s design – or peruse the API Reference.

38 Chapter 2. Tutorial

CHAPTER 3

Distlib’s design

This is the section containing some discussion of how distlib‘s design was arrived at, as and when time permits.

3.1 The locators API

This section describes the design of the distlib API relating to accessing distribution metadata, whether stored
locally or in indexes like PyPI.

3.1.1 The problem we’re trying to solve

People who use distributions need to locate, download and install them. Distributions can be found in a number of
places, such as:

• An Internet index such as The Python Packages Index (PyPI), or a mirror thereof.

• Other Internet resources, such as the developer’s website, or a source code repository such as GitHub, BitBucket,
Google Code or similar.

• File systems, whether local to one computer or shared between several.

• Distributions which have already been installed, and are available in the sys.path of a running Python inter-
preter.

When we’re looking for distributions, we don’t always know exactly what we want: often, we just want the latest
version, but it’s not uncommon to want a specific older version, or perhaps the most recent version that meets some
constraints on the version. Since we need to be concerned with matching versions, we need to consider the version
schemes in use (see The version API).

It’s useful to separate the notion of a project from a distribution: The project is the version-independent part of the
distribution, i.e. it’s described by the name of the distribution and encompasses all released distributions which use
that name.

We often don’t just want a single distribution, either: a common requirement, when installing a distribution, is to locate
all distributions that it relies on, which aren’t already installed. So we need a dependency finder, which itself needs
to locate depended-upon distributions, and recursively search for dependencies until all that are available have been
found.

We may need to distinguish between different types of dependencies:

• Post-installation dependencies. These are needed by the distribution after it has been installed, and is in use.

• Build dependencies. These are needed for building and/or installing the distribution, but are not needed by the
distribution itself after installation.

39

http://pypi.python.org

Distlib Documentation, Release 0.2.2

• Test dependencies. These are only needed for testing the distribution, but are not needed by the distribution
itself after installation.

When testing a distribution, we need all three types of dependencies. When installing a distribution, we need the first
two, but not the third.

3.1.2 A minimal solution

Locating distributions

It seems that the simplest API to locate a distribution would look like locate(requirement), where
requirement is a string giving the distribution name and optional version constraints. Given that we know that dis-
tributions can be found in different places, it’s best to consider a Locator class which has a locate() method with
a corresponding signature, with subclasses for each of the different types of location that distributions inhabit. It’s also
reasonable to provide a default locator in a module attribute default_locator, and a module-level locate()
function which calls the locate() method on the default locator.

Since we’ll often need to locate all the versions of a project before picking one, we can imagine that a locator would
need a get_project() method for fetching all versions of a project; and since we will be likely to want to use
caching, we can assume there will be a _get_project() method to do the actual work of fetching the version
data, which the higher-level get_project() will call (and probably cache). So our locator base class will look
something like this:

class Locator(object):
"""
Locate distributions.
"""

def __init__(self, version_scheme='default'):
"""
Initialise a locator with the specified version scheme.
"""

def locate(self, requirement):
"""
Locate the highest-version distribution which satisfies
the constraints in ``requirement``, and return a
``Distribution`` instance if found, or else ``None``.
"""

def get_project(self, name):
"""
Return all known distributions for a project named ``name``,
returning a dictionary mapping version to ``Distribution``
instance, or an empty dictionary if nothing was found.
Use _get_project to do the actual work, and cache the results for
future use.
"""

def _get_project(self, name):
"""
Return all known distributions for a project named ``name``,
returning a dictionary mapping version to ``Distribution``
instance, or an empty dictionary if nothing was found.
"""

When attempting to locate(), it would be useful to pass requirement information to get_project()

40 Chapter 3. Distlib’s design

Distlib Documentation, Release 0.2.2

/ _get_project(). This can be done in a matcher attribute which is normally None but set to a
distlib.version.Matcher instance when a locate() call is in progress.

Finding dependencies

A dependency finder will depend on a locator to locate dependencies. A simple approach will be to consider a
DependencyFinder class which takes a locator as a constructor argument. It might look something like this:

class DependencyFinder(object):
"""
Locate dependencies for distributions.
"""

def __init__(self, locator):
"""
Initialise an instance, using the specified locator
to locate distributions.
"""

def find(self, requirement, meta_extras=None, prereleases=False):
"""
Find a distribution matching requirement and all distributions
it depends on. Use the ``meta_extras`` argument to determine
whether distributions used only for build, test etc. should be
included in the results. Allow ``requirement`` to be either a
:class:`Distribution` instance or a string expressing a
requirement. If ``prereleases`` is True, treat pre-releases as
normal releases; otherwise only return pre-releases if they're
all that's available.

Return a set of :class:`Distribution` instances and a set of
problems.

The distributions returned should be such that they have the
:attr:`required` attribute set to ``True`` if they were
from the ``requirement`` passed to ``find()``, and they have the
:attr:`build_time_dependency` attribute set to ``True`` unless they
are post-installation dependencies of the ``requirement``.

The problems should be a tuple consisting of the string
``'unsatisfied'`` and the requirement which couldn't be satisfied
by any distribution known to the locator.
"""

3.2 The index API

This section describes the design of the distlib API relating to performing certain operations on Python package
indexes like PyPI. Note that this API does not support finding distributions - the locators API is used for that.

3.2.1 The problem we’re trying to solve

Operations on a package index that are commonly performed by distribution developers are:

• Register projects on the index.

3.2. The index API 41

Distlib Documentation, Release 0.2.2

• Upload distributions relating to projects on the index, with support for signed distributions.

• Upload documentation relating to projects.

Less common operations are:

• Find a list of hosts which mirror the index.

• Save a default .pypirc file with default username and password to use.

3.2.2 A minimal solution

The distutils approach was to have several separate command classes called register, upload and upload_doc,
where really all that was needed was some methods. That’s the approach distlib takes, by implementing a
PackageIndex class with register(), upload_file() and upload_documentation() methods. The
PackageIndex class contains no user interface code whatsoever: that’s assumed to be the domain of the packaging
tool. The packaging tool is expected to get the required information from a user using whatever means the developers
of that tool deem to be the most appropriate; the required attributes are then set on the PackageIndex instance.
(Examples of this kind of information: user name, password, whether the user wants to save a default configuration,
where the signing program and its keys live.)

The minimal interface to provide the required functionality thus looks like this:

class PackageIndex(object):
def __init__(self, url=None, mirror_host=None):

"""
Initialise an instance using a specific index URL, and
a DNS name for a mirror host which can be used to
determine available mirror hosts for the index.
"""

def save_configuration(self):
"""
Save the username and password attributes of this
instance in a default .pypirc file.
"""

def register(self, metadata):
"""
Register a project on the index, using the specified metadata.
"""

def upload_file(self, metadata, filename, signer=None,
sign_password=None, filetype='sdist',
pyversion='source'):

"""
Upload a distribution file to the index using the
specified metadata to identify it, with options
for signing and for binary distributions which are
specific to Python versions.
"""

def upload_documentation(self, metadata, doc_dir):
"""
Upload documentation files in a specified directory
using the specified metadata to identify it, after
archiving the directory contents into a .zip file.
"""

The following additional attributes can be identified on PackageIndex instances:

42 Chapter 3. Distlib’s design

Distlib Documentation, Release 0.2.2

• username - the username to use for authentication.

• password - the password to use for authentication.

• mirrors (read-only) - a list of hostnames of known mirrors.

3.3 The resources API

This section describes the design of the distlib API relating to accessing ‘resources’, which is a convenient label
for data files associated with Python packages.

3.3.1 The problem we’re trying to solve

Developers often have a need to co-locate data files with their Python packages. Examples of these might be:

• Templates, commonly used in web applications

• Translated messages used in internationalisation/localisation

The stdlib does not provide a uniform API to access these resources. A common approach is to use __file__ like
this:

base = os.path.dirname(__file__)
data_filename = os.path.join(base, 'data.bin')
with open(data_filename, 'rb') as f:

read the data from f

However, this approach fails if the package is deployed in a .zip file.

To consider how to provide a minimal uniform API to access resources in Python packages, we’ll assume that the
requirements are as follows:

• All resources are regarded as binary. The consuming application is expected to know how to convert resources
to text, where appropriate.

• All resources are read-only.

• It should be possible to access resources either as streams, or as their entire data as a byte-string.

• Resources will have a unique, identifying name which is text. Resources will be hierarchical and named using
filesystem-like paths using ‘/’ as a separator. The library will be responsible for converting resource names to
the names of the underlying representations (e.g. encoding of file names corresponding to resource names).

• Some resources are containers of other resources, some are not. For example, a resource
nested/nested_resource.bin in a package would not contain other resources, but implies the exis-
tence of a resource nested, which contains nested_resource.bin.

• Resources can only be associated with packages, not with modules. That’s because with peer modules a.py
and b.py, there’s no obvious location for data associated only with a: both a and b are in the same directory.
With a package, there’s no ambiguity, as a package is associated with a specific directory, and no other package
can be associated with that directory.

• Support should be provided for access to data deployed in the file system or in packages contained in .zip files,
and third parties should be able to extend the facilities to work with other storage formats which support import
of Python packages.

• It should be possible to access the contents of any resource through a file on the file system. This is to cater
for any external APIs which need to access the resource data as files (examples would be a shared library for

3.3. The resources API 43

Distlib Documentation, Release 0.2.2

linking using dlopen() on POSIX, or any APIs which need access to resource data via OS-level file handles
rather than Python streams).

3.3.2 A minimal solution

We know that we will have to deal with resources, so it seems natural that there would be a Resource class in the
solution. From the requirements, we can see that a Resource would have the following:

• A name property identifying the resource.

• A as_stream method allowing access to the resource data as a binary stream. This is not a property, because
a new stream is returned each time this method is called. The returned stream should be closed by the caller.

• A bytes property returning the entire contents of the resource as a byte string.

• A size property indicating the size of the resource (in bytes).

• An is_container property indicating whether the resource is a container of other resources.

• A resources property returning the names of resources contained within the resource.

The Resource class would be the logical place to perform sanity checks which relate to all resources. For example:

• It doesn’t make sense to ask for the bytes or size properties or call the as_stream method of a container
resource.

• It doesn’t make sense to ask for the resources property of a resource which is not a container.

It seems reasonable to raise exceptions for incorrect property or method accesses.

We know that we need to support resource access in the file system as well as .zip files, and to support other sources
of storage which might be used to import Python packages. Since import and loading of Python packages happens
through PEP 302 importers and loaders, we can deduce that the mechanism used to find resources in a package will
be closely tied to the loader for that package.

We could consider an API for finding resources in a package like this:

def find_resource(pkg, resource_name):
return a Resource instance for the resource

and then use it like this:

r1 = find_resource(pkg, 'foo')
r2 = find_resource(pkg, 'bar')

However, we’ll often have situations where we will want to get multiple resources from a package, and in certain
applications we might want to implement caching or other processing of resources before returning them. The above
API doesn’t facilitate this, so let’s consider delegating the finding of resources in a package to a finder for that package.
Once we get a finder, we can hang on to it and ask it to find multiple resources. Finders can be extended to provide
whatever caching and preprocessing an application might need.

To get a finder for a package, let’s assume there’s a finder function:

def finder(pkg):
return a finder for the specified package

We can use it like this:

f = finder(pkg)
r1 = f.find('foo')
r2 = f.find('bar')

44 Chapter 3. Distlib’s design

https://www.python.org/dev/peps/pep-0302

Distlib Documentation, Release 0.2.2

The finder function knows what kind of finder to return for a particular package through the use of a registry. Given
a package, finder can determine the loader for that package, and based on the type of loader, it can instantiate the
right kind of finder. The registry maps loader types to callables that return finders. The callable is called with a single
argument – the Python module object for the package.

Given that we have finders in the design, we can identify ResourceFinder and ZipResourceFinder classes
for the two import systems we’re going to support. We’ll make ResourceFinder a concrete class rather than an
interface - it’ll implement getting resources from packages stored in the file system. ZipResourceFinder will be
a subclass of ResourceFinder.

Since there is no loader for file system packages when the C-based import system is used, the registry will come with
the following mappings:

• type(None) -> ResourceFinder

• _frozen_importlib.SourceFileLoader -> ‘‘ResourceFinder

• zipimport.zipimporter -> ZipResourceFinder

Users of the API can add new or override existing mappings using the following function:

def register_finder(loader, finder_maker):
register ``finder_maker`` to make finders for packages with a loader
of the same type as ``loader``.

Typically, the finder_maker will be a class like ResourceFinder or ZipResourceFinder, but it can be
any callable which takes the Python module object for a package and returns a finder.

Let’s consider in more detail what finders look like and how they interact with the Resource class. We’ll keep the
Resource class minimal; API users never instantiate Resource directly, but call a finder’s find method to return a
Resource instance. A finder could return an instance of a Resource subclass if really needed, though it shouldn’t
be necessary in most cases. If a finder can’t find a resource, it should return None.

The Resource constructor will look like this:

def __init__(self, finder, name):
self.finder = finder
self.name = name
other initialisation, not specified

and delegate as much work as possible to its finder. That way, new import loader types can be supported just by
implementing a suitable XXXResourceFinder for that loader type.

What a finder needs to do can be exemplified by the following skeleton for ResourceFinder:

class ResourceFinder(object):
def __init__(self, module):

"Initialise finder for the specified package"

def find(self, resource_name):
"Find and return a ``Resource`` instance or ``None``"

def is_container(self, resource):
"Return whether resource is a container"

def get_bytes(self, resource):
"Return the resource's data as bytes"

def get_size(self, resource):
"Return the size of the resource's data in bytes"

def get_stream(self, resource):

3.3. The resources API 45

Distlib Documentation, Release 0.2.2

"Return the resource's data as a binary stream"

def get_resources(self, resource):
"""
Return the resources contained in this resource as a set of
(relative) resource names
"""

3.3.3 Dealing with the requirement for access via file system files

To cater for the requirement that the contents of some resources be made available via a file on the file system, we’ll
assume a simple caching solution that saves any such resources to a local file system cache, and returns the filename
of the resource in the cache. We need to divide the work between the finder and the cache. We’ll deliver the cache
function through a Cache class, which will have the following methods:

• A constructor which takes an optional base directory for the cache. If none is provided, we’ll construct a base
directory of the form:

<rootdir>/.distlib/resource-cache

where <rootdir> is the user’s home directory. On Windows, if the environment specifies a variable named
LOCALAPPDATA, its value will be used as <rootdir> – otherwise, the user’s home directory will be used.

• A get() method which takes a Resource and returns a file system filename, such that the contents of that
named file will be the contents of the resource.

• An is_stale() method which takes a Resource and its corresponding file system filename, and returns
whether the file system file is stale when compared with the resource. Knowing that cache invalidation is hard,
the default implementation just returns True.

• A prefix_to_dir() method which converts a prefix to a directory name. We’ll assume that for the cache,
a resource path can be divided into two parts: the prefix and the subpath. For resources in a .zip file, the
prefix would be the pathname of the archive, while the subpath would be the path inside the archive. For a file
system resource, since it is already in the file system, the prefix would be None and the subpath would be the
absolute path name of the resource. The prefix_to_dir() method’s job is to convert a prefix (if not None)
to a subdirectory in the cache that holds the cached files for all resources with that prefix. We’ll delegate the
determination of a resource’s prefix and subpath to its finder, using a get_cache_info() method on finders,
which takes a Resource and returns a (prefix, subpath) tuple.

The default implementation will use os.splitdrive() to see if there’s a Windows drive, if present, and
convert its ’:’ to ’---’. The rest of the prefix will be converted by replacing ’/’ by ’--’, and appending
’.cache’ to the result.

The cache will be activated when the file_path property of a Resource is accessed. This will be a cached
property, and will call the cache’s get() method to obtain the file system path.

3.4 The scripts API

This section describes the design of the distlib API relating to installing scripts.

3.4.1 The problem we’re trying to solve

Installing scripts is slightly more involved than simply copying files from source to target, for the following reasons:

46 Chapter 3. Distlib’s design

Distlib Documentation, Release 0.2.2

• On POSIX systems, scripts need to be made executable. To cater for scenarios where there are multiple Python
versions installed on a computer, scripts need to have their shebang lines adjusted to point to the correct inter-
preter. This requirement is commonly found when virtual environments (venvs) are in use, but also in other
multiple-interpreter scenarios.

• On Windows systems, which don’t support shebang lines natively, some alternate means of finding the correct
interpreter need to be provided. Following the acceptance and implementation of PEP 397, a shebang- interpret-
ing launcher will be available in Python 3.3 and later and a standalone version of it for use with earlier Python
versions is also available. However, where this can’t be used, an alternative approach using executable launchers
installed with the scripts may be necessary. (That is the approach taken by setuptools.) Windows also has
two types of launchers - console applications and Windows applications. The appropriate launcher needs to be
used for scripts.

• Some scripts are effectively just callable code in a Python package, with boilerplate for importing that code,
calling it and returning its return value as the script’s return code. It would be useful to have the boilerplate
standardised, so that developers need just specify which callables to expose as scripts, and under what names,
using e.g. a name = callable syntax. (This is the approach taken by setuptools for the popular
console_scripts feature).

3.4.2 A minimal solution

Script handling in distutils and setuptools is done in two phases: ‘build’ and ‘install’. Whether a particular
packaging tool chooses to do the ‘heavy lifting’ of script creation (i.e. the things referred to above, beyond simple
copying) in ‘build’ or ‘install’ phases, the job is the same. To abstract out just the functionality relating to scripts, in
an extensible way, we can just delegate the work to a class, unimaginatively called ScriptMaker. Given the above
requirements, together with the more basic requirement of being able to do ‘dry-run’ installation, we need to provide
a ScriptMaker with the following items of information:

• Where source scripts are to be found.

• Where scripts are to be installed.

• Whether, on Windows, executable launchers should be added.

• Whether a dry-run mode is in effect.

These dictate the form that ScriptMaker.__init__() will take.

In addition, other methods suggest themselves for ScriptMaker:

• A make() method, which takes a specification, which is either a filename or a ‘wrap me a callable’ indicator
which looks like this:

name = some_package.some_module:some_callable [flag(=value) ...]

The name would need to be a valid filename for a script, and the some_package.some_module part
would indicate the module where the callable resides. The some_callable part identifies the callable, and
optionally you can have flags, which the ScriptMaker instance must know how to interpret. One flag would
be ’gui’, indicating that the launcher should be a Windows application rather than a console application, for
GUI-based scripts which shouldn’t show a console window.

The above specification is used by setuptools for the ‘console_scripts’ feature. See Flag formats for more
information about flags.

Note: Both setuptools and PEP 426 interpret flags as a single value, which represents an extra (a set of
optional dependencies needed for optional features of a distribution).

3.4. The scripts API 47

https://www.python.org/dev/peps/pep-0426

Distlib Documentation, Release 0.2.2

It seems sensible for this method to return a list of absolute paths of files that were installed (or would have been
installed, but for the dry-run mode being in effect).

• A make_multiple() method, which takes an iterable of specifications and just runs calls make() on each
item iterated over, aggregating the results to return a list of absolute paths of all files that were installed (or
would have been installed, but for the dry-run mode being in effect).

One advantage of having this method is that you can override it in a subclass for post-processing, e.g. to run a
tool like 2to3, or an analysis tool, over all the installed files.

• The details of the callable specification can be encapsulated in a utility function, get_exports_entry().
This would take a specification and return None, if the specification didn’t match the callable format, or an
instance of ExportEntry if it did match.

In addition, the following attributes on a ScriptMaker could be further used to refine its behaviour:

• force to indicate when scripts should be copied from source to target even when timestamps show the target
is up to date.

• set_mode to indicate whether, on Posix, the execute mode bits should be set on the target script.

Flag formats

Flags, if present, are enclosed by square brackets. Each flag can have the format of just an alphanumeric string,
optionally followed by an ‘=’ and a value (with no intervening spaces). Multiple flags can be separated by ‘,’ and
whitespace. The following would be valid flag sections:

[a,b,c]
[a, b, c]
[a=b, c=d, e, f=g, 9=8]

whereas the following would be invalid:

[]
[\]
[a,]
[a,,b]
[a=,b,c]

Note: Both setuptools and PEP 426 restrict flag formats to a single value, without an =. This value represents
an extra (a set of optional dependencies needed for optional features of a distribution).

3.5 The version API

This section describes the design of the distlib API relating to versions.

3.5.1 The problem we’re trying to solve

Distribution releases are named by versions and versions have two principal uses:

• Identifying a particular release and determining whether or not it is earlier or later than some other release.

• When specifying other distributions that a distribution release depends on, specifying constraints governing the
releases of those distributions that are depended upon.

48 Chapter 3. Distlib’s design

https://www.python.org/dev/peps/pep-0426

Distlib Documentation, Release 0.2.2

In addition, qualitative information may be given by the version format about the quality of the release: e.g. alpha
versions, beta versions, stable releases, hot-fixes following a stable release. The following excerpt from PEP 386
defines the requirements for versions:

• It should be possible to express more than one versioning level (usually this is expressed as major and minor
revision and, sometimes, also a micro revision).

• A significant number of projects need special meaning versions for “pre-releases” (such as “alpha”, “beta”,
“rc”), and these have widely used aliases (“a” stands for “alpha”, “b” for “beta” and “c” for “rc”). And these pre-
release versions make it impossible to use a simple alphanumerical ordering of the version string components.
(e.g. 3.1a1 < 3.1)

• Some projects also need “post-releases” of regular versions, mainly for maintenance purposes, which can’t be
clearly expressed otherwise.

• Development versions allow packagers of unreleased work to avoid version clashes with later stable releases.

There are a number of version schemes in use. The ones of most interest in the Python ecosystem are:

• Loose versioning in distutils. Any version number is allowed, with lexicographical ordering. No support
exists for pre- and post-releases, and lexicographical ordering can be unintuitive (e.g. ‘1.10’ < ‘1.2.1’)

• Strict versioning in distutils, which supports slightly more structure. It allows for up to three dot-separated
numeric components, and support for multiple alpha and beta releases. However, there is no support for release
candidates, nor for post-release versions.

• Versioning in setuptools/distribute. This is described in PEP 386 in this section – it’s perhaps the
most widely used Python version scheme, but since it tries to be very flexible and work with a wide range of
conventions, it ends up allowing a very chaotic mess of version conventions in the Python community as a
whole.

• The proposed versioning scheme described in PEP 440.

• Semantic versioning, which is rational, simple and well-regarded in the software community in general.

Although the new versioning scheme mentioned in PEP 386 was implemented in distutils2 and that code has
been copied over to distlib, there are many projects on PyPI which do not conform to it, but rather to the “legacy”
versioning schemes in distutils/setuptools/distribute. These schemes are deserving of some support
not because of their intrinsic qualities, but due to their ubiquity in projects registered on PyPI. Below are some results
from testing actual projects on PyPI:

Packages processed: 24891
Packages with no versions: 217
Packages with versions: 24674
Number of packages clean for all schemes: 19010 (77%)
Number of packages clean for PEP 386: 21072 (85%)
Number of packages clean for PEP 386 + suggestion: 23685 (96%)
Number of packages clean for legacy: 24674 (100%, by you would expect)
Number of packages clean for semantic: 19278 (78%)

where “+ suggestion” refers to using the suggested version algorithm to derive a version from a version which would
otherwise be incompatible with PEP 386.

3.5.2 A minimal solution

Since distlib is a low-level library which might be used by tools which work with existing projects, the internal
implementation of versions has changed slightly from distutils2 to allow better support for legacy version num-
bering. Since the re-implementation facilitated adding semantic version support at minimal cost, this has also been
provided.

3.5. The version API 49

https://www.python.org/dev/peps/pep-0386
https://www.python.org/dev/peps/pep-0386
http://www.python.org/dev/peps/pep-0386/#setuptools
https://www.python.org/dev/peps/pep-0440
http://semver.org/
https://www.python.org/dev/peps/pep-0386

Distlib Documentation, Release 0.2.2

Versions

The basic scheme is as follows. The differences between versioning schemes is catered for by having a single
function for each scheme which converts a string version to an appropriate tuple which acts as a key for sort-
ing and comparison of versions. We have a base class, Version, which defines any common code. Then we
can have subclasses NormalizedVersion (PEP-386), LegacyVersion (distribute/setuptools) and
SemanticVersion.

To compare versions, we just check type compatibility and then compare the corresponding tuples.

Matchers

Matchers take a name followed by a set of constraints in parentheses. Each constraint is an operation together with a
version string which needs to be converted to the corresponding version instance.

In summary, the following attributes can be identified for Version and Matcher:

Version:

• version string passed in to constructor (stripped)

• parser to convert string string to tuple

• compare functions to compare with other versions of same type

Matcher:

• version string passed in to constructor (stripped)

• name of distribution

• list of constraints

• parser to convert string to name and set of constraints, using the same function as for Version to convert
the version strings in the constraints to version instances

• method to match version to constraints and return True/False

Given the above, it appears that all the functionality could be provided with a single class per versioning scheme, with
the only difference between them being the function to convert from version string to tuple. Any instance would act as
either version or predicate, would display itself differently according to which it is, and raise exceptions if the wrong
type of operation is performed on it (matching only allowed for predicate instances; <=, <, >=, > comparisons only
allowed for version instances; and == and != allowed for either.

However, the use of the same class to implement versions and predicates leads to ambiguity, because of the very loose
project naming and versioning schemes allowed by PyPI. For example, “Hello 2.0” could be a valid project name,
and “5” is a project name actually registered on PyPI. If distribution names can look like versions, it’s hard to discern
the developer’s intent when creating an instance with the string “5”. So, we make separate classes for Version and
Matcher.

For ease of testing, the module will define, for each of the supported schemes, a function to do the parsing (as no
information is needed other than the string), and the parse method of the class will call that function:

def normalized_key(s):
"parse using PEP-386 logic"

def legacy_key(s):
"parse using distribute/setuptools logic"

def semantic_key(s):
"parse using semantic versioning logic"

50 Chapter 3. Distlib’s design

Distlib Documentation, Release 0.2.2

class Version:
defines all common code

def parse(self, s):
raise NotImplementedError('Please implement in a subclass')

and then:

class NormalizedVersion(Version):
def parse(self, s): return normalized_key(s)

class LegacyVersion(Version):
def parse(self, s): return legacy_key(s)

class SemanticVersion(Version):
def parse(self, s): return semantic_key(s)

And a custom versioning scheme can be devised to work in the same way:

def custom_key(s):
"""
convert s to tuple using custom logic, raise UnsupportedVersionError
on problems
"""

class CustomVersion(Version):
def parse(self, s): return custom_key(s)

The matcher classes are pretty minimal, too:

class Matcher(object):
version_class = None

def match(self, string_or_version):
"""
If passed a string, convert to version using version_class,
then do matching in a way independent of version scheme in use
"""

and then:

class NormalizedMatcher(Matcher):
version_class = NormalizedVersion

class LegacyMatcher(Matcher):
version_class = LegacyVersion

class SemanticMatcher(Matcher):
version_class = SemanticVersion

Version schemes

Ideally one would want to work with the PEP 386 scheme, but there might be times when one needs to work with the
legacy scheme (for example, when investigating dependency graphs of existing PyPI projects). Hence, the important
aspects of each scheme are bundled into a simple VersionScheme class:

class VersionScheme(object):
def __init__(self, key, matcher):

3.5. The version API 51

Distlib Documentation, Release 0.2.2

self.key = key # version string -> tuple converter
self.matcher = matcher # Matcher subclass for the scheme

Of course, the version class is also available through the matcher’s version_class attribute.

VersionScheme makes it easier to work with alternative version schemes. For example, say we decide to experi-
ment with an “adaptive” version scheme, which is based on the PEP 386 scheme, but when handed a non-conforming
version, automatically tries to convert it to a normalized version using suggest_normalized_version().
Then, code which has to deal with version schemes just has to pick the appropriate scheme by name.

Creating the adaptive scheme is easy:

def adaptive_key(s):
try:

result = normalized_key(s, False)
except UnsupportedVersionError:

s = suggest_normalized_version(s)
if s is None:

raise
result = normalized_key(s, False)

return result

class AdaptiveVersion(NormalizedVersion):
def parse(self, s): return adaptive_key(s)

class AdaptiveMatcher(Matcher):
version_class = AdaptiveVersion

The appropriate scheme can be fetched by using the get_scheme() function, which is defined thus:

def get_scheme(scheme_name):
"Get a VersionScheme for the given scheme_name."

Allowed names are ’normalized’, ’legacy’, ’semantic’, ’adaptive’ and ’default’ (which points
to the same as ’adaptive’). If an unrecognised name is passed in, a ValueError is raised.

The reimplemented distlib.version module is shorter than the corresponding module in distutils2, but the
entire test suite passes and there is support for working with three versioning schemes as opposed to just one. However,
the concept of “final” versions, which is not in the PEP but which was in the distutils2 implementation, has been
removed because it appears of little value (there’s no way to determine the “final” status of versions for many of the
project releases registered on PyPI).

3.6 The wheel API

This section describes the design of the wheel API which failitates building and installing from wheels, the new
binary distribution format for Python described in PEP 427.

3.6.1 The problem we’re trying to solve

There are basically two operations which need to be performed on wheels:

• Building a wheel from a source distribution.

• Installing a distribution which has been packaged as a wheel.

52 Chapter 3. Distlib’s design

https://www.python.org/dev/peps/pep-0427

Distlib Documentation, Release 0.2.2

3.6.2 A minimal solution

Since we’re talking about wheels, it seems likely that a Wheel class would be part of the design. This allows for
extensibility over a purely function-based API. The Wheel would be expected to have methods that support the
required operations:

class Wheel(object):
def __init__(self, spec):

"""
Initialise an instance from a specification. This can either be a
valid filename for a wheel (for when you want to work with an
existing wheel), or just the ``name-version-buildver`` portion of
a wheel's filename (for when you're going to build a wheel for a
known version and build of a named project).
"""

def build(self, paths, tags=None):
"""
Build a wheel. The ``name`, ``version`` and ``buildver`` should
already have been set correctly. The ``paths`` should be a
dictionary with keys 'prefix', 'scripts', 'headers', 'data' and one
of 'purelib' and 'platlib'. These must point to valid paths if
they are to be included in the wheel. The optional ``tags``
argument should, if specified, be a dictionary with optional keys
'pyver', 'abi' and 'arch' indicating lists of tags which
indicate environments with which the wheel is compatible.
"""

def install(self, paths, maker, **kwargs):
"""
Install from a wheel. The ``paths`` should be a dictionary with
keys 'prefix', 'scripts', 'headers', 'data', 'purelib' and
'platlib'. These must point to valid paths to which files may
be written if they are in the wheel. Only one of the 'purelib'
and 'platlib' paths will be used (in the case where they are
different), depending on whether the wheel is for a pure-
Python distribution.

The ``maker`` argument should be a suitably configured
:class:`ScriptMaker` instance. The ``source_dir`` and
``target_dir`` arguments can be set to ``None`` when creating the
instance - these will be set to appropriate values inside this
method.

The following keyword arguments are recognised:

* ``warner``, if specified, should be a callable
that will be called with (software_wheel_ver, file_wheel_ver)
if they differ. They will both be in the form of tuples
(major_ver, minor_ver). The ``warner`` defaults to ``None``.

* It's conceivable that one might want to install only the library
portion of a package -- not installing scripts, headers data and
so on. If ``lib_only`` is specified as ``True``, only the
``site-packages`` contents will be installed. The default value
is ``False`` (meaning everything will be installed).

"""

In addition to the above, the following attributes can be identified for a Wheel instance:

3.6. The wheel API 53

Distlib Documentation, Release 0.2.2

• name – the name of the distribution

• version – the version of the distribution

• buildver – the build tag for the distribution

• pyver – a list of Python versions with which the wheel is compatible

• abi – a list of application binary interfaces (ABIs) with which the wheel is compatible

• arch – a list of architectures with which the wheel is compatible

• dirname – The directory in which a wheel file is found/to be created

• filename – The filename of the wheel (computed from the other attributes)

3.7 Next steps

You might find it helpful to look at the API Reference.

54 Chapter 3. Distlib’s design

CHAPTER 4

API Reference

This is the place where the functions and classes in distlib’s public API are described.

4.1 The distlib.database package

4.1.1 Classes

class DistributionPath
This class represents a set of distributions which are installed on a Python path (like PYTHONPATH /
sys.path). Both new-style (distlib) and legacy (egg) distributions are catered for.

Methods:

__init__(path=None, include_egg=False)
Initialise the instance using a particular path.

Parameters

• path (list of str) – The path to use when looking for distributions. If None is
specified, sys.path is used.

• include_egg – If True, legacy distributions (eggs) are included in the search; other-
wise, they aren’t.

enable_cache()
Enables a cache, so that metadata information doesn’t have to be fetched from disk. The cache is per
instance of the DistributionPath instance and is enabled by default. It can be disabled using
disable_cache() and cleared using clear_cache() (disabling won’t automatically clear it).

disable_cache()
Disables the cache, but doesn’t clear it.

clear_cache()
Clears the cache, but doesn’t change its enabled/disabled status. If enabled, the cache will be re-populated
when querying for distributions.

get_distributions()
The main querying method if you want to look at all the distributions. It returns an iterator which returns
Distribution and, if include_egg was specified as True for the instance, also instances of any
EggInfoDistribution for any legacy distributions found.

get_distribution(name)
Looks for a distribution by name. It returns the first one found with that name (there should only be one

55

Distlib Documentation, Release 0.2.2

distribution with a given name on a given search path). Returns None if no distribution was found, or
else an instance of Distribution (or, if include_egg was specified as True for the instance, an
instance of EggInfoDistribution if a legacy distribution was found with that name).

Parameters name (str) – The name of the distribution to search for.

get_exported_entries(category, name=None)
Returns an iterator for entries exported by distributions on the path.

Parameters

• category (str) – The export category to look in.

• name (str) – A specific name to search for. If not specified, all entries in the category
are returned.

Returns An iterator which iterates over exported entries (instances of ExportEntry).

class Distribution
A class representing a distribution, typically one which hasn’t been installed (most likely, one which has been
obtained from an index like PyPI).

Properties:

name
The name of the distribution.

version
The version of the distribution.

metadata
The metadata for the distribution. This is a distlib.metadata.Metadata instance.

download_url
The download URL for the distribution. If there are multiple URLs, this will be one of the values in
download_urls.

download_urls
A set of known download URLs for the distribution.

New in version 0.2.0: The download_urls attribute was added.

digest
The digest for the source distribution. This is either None or a 2-tuple consisting of the hashing algorithm
and the digest using that algorithm, e.g. (’sha256’, ’01234...’).

digests
A dictionary mapping download URLs to digests, if and when digests are available.

New in version 0.2.0: The digests attribute was added.

locator
The locator for an instance which has been retrieved through a locator. This is None for an installed
distribution.

class InstalledDistribution(Distribution)
A class representing an installed distribution. This class is not instantiated directly, except by packaging tools.
Instances of it are returned from querying a DistributionPath.

Properties:

requested
Whether the distribution was installed by user request (if not, it may have been installed as a dependency
of some other distribution).

56 Chapter 4. API Reference

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

Distlib Documentation, Release 0.2.2

exports
The distribution’s exports, as described in Exporting things from Distributions. This is a cached property.

Methods:

list_installed_files(local=False)
Returns an iterator over all of the individual files installed as part of the distribution, including metadata
files. The iterator returns tuples of the form (path, hash, size). The list of files is written by the installer to
the RECORD metadata file.

Parameters local – If True, the paths returned are local absolute paths (i.e. with platform-
specific directory separators as indicated by os.sep); otherwise, they are the values stored
in the RECORD metadata file.

list_distinfo_files(local=False)
Similar to list_installed_files(), but only returns metadata files.

Parameters local – As for list_installed_files().

check_installed_files()
Runs over all the installed files to check that the size and checksum are unchanged from the values in the
RECORD file, written when the distribution was installed. It returns a list of mismatches. If the files in the
distribution haven’t been corrupted , an empty list will be returned; otherwise, a list of mismatches will be
returned.

Returns

A list which, if non-empty, will contain tuples with the following elements:

• The path in RECORD which failed to match.

• One of the strings ‘exists’, ‘size’ or ‘hash’ according to what didn’t match (existence is
checked first, then size, then hash).

• The expected value of what didn’t match (as obtained from RECORD).

• The actual value of what didn’t match (as obtained from the file system).

read_exports(filename=None)
Read exports information from a file.

Normal access to a distribution’s exports should be through its exports attribute. This method is called
from there as needed. If no filename is specified, the EXPORTS file in the .dist-info directory is read
(it is expected to be present).

Parameters filename (str) – The filename to read from, or None to read from the default
location.

Returns The exports read from the file.

Return type dict

write_exports(exports, filename=None)
Write exports information to a file.

If no filename is specified, the EXPORTS file in the .dist-info directory is written.

Parameters

• exports (dict) – A dictionary whose keys are categories and whose values are dictio-
naries which contain ExportEntry instances keyed on their name.

• filename (str) – The filename to read from, or None to read from the default location.

4.1. The distlib.database package 57

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#str

Distlib Documentation, Release 0.2.2

class EggInfoDistribution
Analogous to Distribution, but covering legacy distributions. This class is not instantiated directly. In-
stances of it are returned from querying a DistributionPath.

Properties:

name
The name of the distribution.

version
The version of the distribution.

metadata
The metadata for the distribution. This is a distlib.metadata.Metadata instance.

Methods:

list_installed_files(local=False)
Returns a list all of the individual files installed as part of the distribution.

Parameters local – If True, the paths returned are local absolute paths (i.e. with platform-
specific directory separators as indicated by os.sep).

class DependencyGraph
This class represents a dependency graph between releases. The nodes are distribution instances; the edges
model dependencies. An edge from a to b means that a depends on b.

add_distribution(distribution)
Add distribution to the graph.

add_edge(x, y, label=None)
Add an edge from distribution x to distribution y with the given label (string).

add_missing(distribution, requirement)
Add a missing requirement (string) for the given distribution.

repr_node(dist, level=1)
Print a subgraph starting from dist. level gives the depth of the subgraph.

Direct access to the graph nodes and edges is provided through these attributes:

adjacency_list
Dictionary mapping distributions to a list of (other, label) tuples where other is a distribution
and the edge is labelled with label (i.e. the version specifier, if such was provided).

reverse_list
Dictionary mapping distributions to a list of predecessors. This allows efficient traversal.

missing
Dictionary mapping distributions to a list of requirements that were not provided by any distribution.

4.2 The distlib.resources package

4.2.1 Attributes

cache
An instance of ResourceCache. This can be set after module import, but before calling any functionality
which uses it, to ensure that the cache location is entirely under your control.

58 Chapter 4. API Reference

Distlib Documentation, Release 0.2.2

If you access the file_path property of Resource instance, the cache will be needed, and if not set by you,
an instance with a default location will be created. See distlib.util.get_cache_base() for more
information.

4.2.2 Functions

finder(package)
Get a finder for the specified package.

If the package hasn’t been imported yet, an attempt will be made to import it. If importing fails, an
ImportError will be raised.

Parameters package (str) – The name of the package for which a finder is desired.

Returns A finder for the package.

register_finder(loader, finder_maker)
Register a callable which makes finders for a particular type of PEP 302 loader.

Parameters

• loader – The loader for which a finder is to be returned.

• finder_maker – A callable to be registered, which is called when a loader of the speci-
fied type is used to load a package. The callable is called with a single argument – the Python
module object corresponding to the package – and must return a finder for that package.

4.2.3 Classes

class Resource
A class representing resources. It is never instantiated directly, but always through calling a finder’s find
method.

Properties:

is_container
Whether this instance is a container of other resources.

bytes
All of the resource data as a byte string. Raises an exception if accessed on a container resource.

size
The size of the resource data in bytes. Raises an exception if accessed on a container resource.

resources
The relative names of all the contents of this resource. Raises an exception if accessed on a resource which
is not a container.

path
This attribute is set by the resource’s finder. It is a textual representation of the path, such that if a PEP
302 loader’s get_data() method is called with the path, the resource’s bytes are returned by the loader.
This attribute is analogous to the resource_filename API in setuptools. Note that for resources
in zip files, the path will be a pointer to the resource in the zip file, and not directly usable as a filename.
While setuptools deals with this by extracting zip entries to cache and returning filenames from the
cache, this does not seem an appropriate thing to do in this package, as a resource is already made available
to callers either as a stream or a string of bytes.

4.2. The distlib.resources package 59

http://docs.python.org/library/functions.html#str
https://www.python.org/dev/peps/pep-0302

Distlib Documentation, Release 0.2.2

file_path
This attribute is the same as the path for file-based resource. For resources in a .zip file, the relevant
resource is extracted to a file in a cache in the file system, and the name of the cached file is returned. This
is for use with APIs that need file names, or need to be able to access data through OS-level file handles.
See the Cache documentation for more information about the cache.

Methods:

as_stream()
A binary stream of the resource’s data. This must be closed by the caller when it’s finished with.

Raises an exception if called on a container resource.

class ResourceFinder
A base class for resource finders, which finds resources for packages stored in the file system.

__init__(module)
Initialise the finder for the package specified by module.

Parameters module – The Python module object representing a package.

find(resource_name)
Find a resource with the name specified by resource_name and return a Resource instance which
represents it.

Parameters resource_name – A fully qualified resource name, with hierarchical compo-
nents separated by ‘/’.

Returns A Resource instance, or None if a resource with that name wasn’t found.

iterator(resource_name)
Return a generator which walks through the resources available through resource_name.

Parameters resource_name – A fully qualified resource name, with hierarchical compo-
nents separated by ‘/’. You can use ‘’ to mean the ‘root’ resource. If the resource name
refers to a non-container resource, only that resource is returned. Otherwise, the named
resource is returned, followed by its children, recursively. If there is no resource named
resource_name, None is returned.

Returns A generator to iterate over resources, or None.

is_container(resource)
Return whether a resource is a container of other resources.

Parameters resource (a Resource instance) – The resource whose status as container is
wanted.

Returns True or False.

get_stream(resource)
Return a binary stream for the specified resource.

Parameters resource (a Resource instance) – The resource for which a stream is wanted.

Returns A binary stream for the resource.

get_bytes(resource)
Return the contents of the specified resource as a byte string.

Parameters resource (a Resource instance) – The resource for which the bytes are wanted.

Returns The data in the resource as a byte string.

get_size(resource)
Return the size of the specified resource in bytes.

60 Chapter 4. API Reference

Distlib Documentation, Release 0.2.2

Parameters resource (a Resource instance) – The resource for which the size is wanted.

Returns The size of the resource in bytes.

class ZipResourceFinder
This has the same interface as ResourceFinder.

class ResourceCache
This class implements a cache for resources which must be accessible as files in the file system. It is based on
Cache, and adds resource-specific methods.

__init__(base=None)
Initialise a cache instance with a specific directory which holds the cache. If base is not specified, the value
resource-cache in the directory returned by get_cache_base() is used.

get(resource)
Ensures that the resource is available as a file in the file system, and returns the name of that file. This
method calls the resource’s finder’s get_cache_info() method.

is_stale(resource, path)
Returns whether the data in the resource which is cached in the file system is stale compared to the re-
source’s current data. The default implementation returns True, causing the resource’s data to be re-
written to the file every time.

4.3 The distlib.scripts package

4.3.1 Classes

class ScriptMaker
A class used to install scripts based on specifications.

source_dir
The directory where script sources are to be found.

target_dir
The directory where scripts are to be created.

add_launchers
Whether to create native executable launchers on Windows.

force
Whether to overwrite scripts even when timestamps show they’re up to date.

set_mode
Whether, on Posix, the scripts should have their execute mode set.

script_template
The text of a template which should contain %(shebang)s, %(module)s and %(func)s in the ap-
propriate places.

The attribute is defined at class level. You can override it at the instance level to customise your scripts.

__init__(source_directory, target_directory, add_launchers=True, dry_run=False)
Initialise the instance with options that control its behaviour.

Parameters

• source_directory (str) – Where to find scripts to install.

• target_directory (str) – Where to install scripts to.

4.3. The distlib.scripts package 61

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

Distlib Documentation, Release 0.2.2

• add_launchers (bool) – If true, create executable launchers on Windows. The exe-
cutables are currently generated from the following project:

https://bitbucket.org/vinay.sajip/simple_launcher/

• dry_run – If true, don’t actually install scripts - just pretend to.

make(specification, options=None)
Make a script in the target directory.

Parameters

• specification (str) – A specification, which can take one of the following forms:

– A filename, relative to source_directory, such as foo.py or
subdir/bar.py.

– A reference to a callable, given in the form:

name = some_package.some_module:some_callable [flags]

where the flags part is optional.

When this form is passed, a Python stub script is created with the appropriate shebang
line and with code to load and call the specified callable with no arguments, returning
its value as the return code from the script.

For more information about flags, see Flag formats.

• options (dict) – If specified, a dictionary of options used to control script creation.
Currently, the following keys are checked:

gui: This should be a bool which, if True, indicates that the script is a windowed
application. This distinction is only drawn on Windows if add_launchers is
True, and results in a windowed native launcher application if options[’gui’]
is True (otherwise, the native executable launcher is a console application).

interpreter_args: If specified, this should be a list of strings which are ap-
pended to the interpreter executable in the shebang line. If there are values with
spaces, you will need to surround them with double quotes.

Note: Linux does not handle passing arguments to interpreters particularly well –
multiple arguments are bundled up into one when passing to the interpreter – see
https://en.wikipedia.org/wiki/Shebang_line#Portability for more information. This
may also affect other POSIX platforms – consult the OS documentation for your
system if necessary. On Windows, the distlib native executable launchers do
parse multiple arguments and pass them to the interpreter.

Returns A list of absolute pathnames of files installed (or which would have been installed, but
for dry_run being true).

make_multiple(specifications, options)
Make multiple scripts from an iterable.

This method just calls make() once for each value returned by the iterable, but it might be convenient to
override this method in some scenarios to do post-processing of the installed files (for example, running
2to3 on them).

Parameters

• specifications – an iterable giving the specifications to follow.

62 Chapter 4. API Reference

http://docs.python.org/library/functions.html#bool
https://bitbucket.org/vinay.sajip/simple_launcher/
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/stdtypes.html#dict
https://en.wikipedia.org/wiki/Shebang_line#Portability

Distlib Documentation, Release 0.2.2

• options – As for the make() method.

Returns A list of absolute pathnames of files installed (or which would have been installed,
but for dry_run being true).

4.4 The distlib.locators package

4.4.1 Classes

class Locator
The base class for locators. Implements logic common to multiple locators.

__init__(scheme=’default’)
Initialise an instance of the locator.

Parameters scheme (str) – The version scheme to use.

get_project(name)
This method should be implemented in subclasses. It returns a (potentially empty) dictionary whose
keys are the versions located for the project named by name, and whose values are instances of
distlib.util.Distribution.

convert_url_to_download_info(url, project_name)
Extract information from a URL about the name and version of a distribution.

Parameters

• url (str) – The URL potentially of an archive (though it needn’t be).

• project_name (str) – This must match the project name determined from the
archive (case-insensitive matching is used).

Returns

None if the URL does not appear to be that of a distribution archive for the named project.
Otherwise, a dictionary is returned with the following keys at a minimum:

• url – the URL passed in, minus any fragment portion.

• filename – a suitable filename to use for the archive locally.

Optional keys returned are:

• md5_digest – the MD5 hash of the archive, for verification after downloading. This
is extracted from the fragment portion, if any, of the passed-in URL.

• sha256_digest – the SHA256 hash of the archive, for verification after downloading.
This is extracted from the fragment portion, if any, of the passed-in URL.

Return type dict

get_distribution_names()
Get the names of all distributions known to this locator.

The base class raises NotImplementedError; this method should be implemented in a subclass.

Returns All distributions known to this locator.

Return type set

4.4. The distlib.locators package 63

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#set

Distlib Documentation, Release 0.2.2

locate(requirement, prereleases=False)
This tries to locate the latest version of a potentially downloadable distribution which matches a require-
ment (name and version constraints). If a potentially downloadable distribution (i.e. one with a download
URL) is not found, None is returned – otherwise, an instance of Distribution is returned. The
returned instance will have, at a minimum, name, version and source_url populated.

Parameters

• requirement (str) – The name and optional version constraints of the distribu-
tion to locate, e.g. ’Flask’ or ’Flask (>= 0.7, < 0.9)’.

• prereleases (bool) – If True, prereleases are treated like normal releases. The
default behaviour is to not return any prereleases unless they are the only ones which
match the requirement.

Returns A matching instance of Distribution, or None.

class DirectoryLocator(Locator)
This locator scans the file system under a base directory, looking for distribution archives. The locator scans all
subdirectories recursively, unless the recursive flag is set to False.

__init__(base_dir, **kwargs)

Parameters

• base_dir (str) – The base directory to scan for distribution archives.

• kwargs – Passed to base class constructor, apart from the following keyword argu-
ments:

– recursive (defaults to True) – if False, no recursion into subdirectories oc-
curs.

class PyPIRPCLocator(Locator)
This locator uses the PyPI XML-RPC interface to locate distribution archives and other data about downloads.

__init__(url, **kwargs)

param url The base URL to use for the XML-RPC service.

type url str

param kwargs Passed to base class constructor.

get_project(name)
See Locator.get_project().

class PyPIJSONLocator(Locator)
This locator uses the PyPI JSON interface to locate distribution archives and other data about downloads. It gets
the metadata and URL information in a single call, so it should perform better than the XML-RPC locator.

__init__(url, **kwargs)

param url The base URL to use for the JSON service.

type url str

param kwargs Passed to base class constructor.

get_project(name)
See Locator.get_project().

class SimpleScrapingLocator
This locator uses the PyPI ‘simple’ interface – a Web scraping interface – to locate distribution archives.

__init__(url, timeout=None, num_workers=10, **kwargs)

64 Chapter 4. API Reference

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#str

Distlib Documentation, Release 0.2.2

Parameters

• url (str) – The base URL to use for the simple service HTML pages.

• timeout (float) – How long (in seconds) to wait before giving up on a remote
resource.

• num_workers (int) – The number of worker threads created to perform scraping
activities.

• kwargs – Passed to base class constructor.

class DistPathLocator
This locator uses a DistributionPath instance to locate installed distributions.

__init__(url, distpath, **kwargs)

Parameters

• distpath (DistributionPath) – The distribution path to use.

• kwargs – Passed to base class constructor.

class AggregatingLocator(Locator)
This locator uses a list of other aggregators and delegates finding projects to them. It can either return the first
result found (i.e. from the first aggregator in the list provided which returns a non-empty result), or a merged
result from all the aggregators in the list.

__init__(*locators, **kwargs)

Parameters

• locators (sequence of locators) – A list of aggregators to delegate find-
ing projects to.

• merge (bool) – If this kwarg is True, each aggregator in the list is asked to provide
results, which are aggregated into a results dictionary. If False, the first non-empty
return value from the list of aggregators is returned. The locators are consulted in the
order in which they’re passed in.

class DependencyFinder
This class allows you to recursively find all the distributions which a particular distribution depends on.

__init__(locator)
Initialise an instance with the locator to be used for locating distributions.

find(requirement, metas_extras=None, prereleases=False)
Find all the distributions needed to fulfill requirement.

Parameters

• requirement – A string of the from name (version) where version can in-
clude an inequality constraint, or an instance of Distribution (e.g. representing
a distribution on the local hard disk).

• meta_extras – A list of meta extras such as :test:, :build: and so on, to be included
in the dependencies.

• prereleases – If True, allow pre-release versions to be returned - otherwise,
don’t return prereleases unless they’re all that’s available.

Returns

A 2-tuple. The first element is a set of Distribution instances. The second element is
a set of problems encountered during dependency resolution. Currently, if this set is non-

4.4. The distlib.locators package 65

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#bool

Distlib Documentation, Release 0.2.2

empty, it will contain 2-tuples whose first element is the string ‘unsatisfied’ and whose
second element is a requirement which couldn’t be satisfied.

In the set of Distribution instances returned, some attributes will be set:

• The instance representing the passed-in requirement will have the requested
attribute set to True.

• All requirements which are not installation requirements (in other words, are needed
only for build and test) will have the build_time_dependency attribute set to
True.

4.4.2 Functions

get_all_distribution_names(url=None)
Retrieve the names of all distributions registered on an index.

Parameters url (str) – The XML-RPC service URL of the node to query. If not specified, The
main PyPI index is queried.

Returns A list of the names of distributions registered on the index. Note that some of the names
may be Unicode.

Return type list

locate(requirement, prereleases=False)
This convenience function returns the latest version of a potentially downloadable distribution which matches a
requirement (name and version constraints). If a potentially downloadable distribution (i.e. one with a download
URL) is not found, None is returned – otherwise, an instance of Distribution is returned. The returned
instance will have, at a minimum, name, version, download_url and download_urls.

Parameters

• requirement (str) – The name and optional version constraints of the distribution
to locate, e.g. ’Flask’ or ’Flask (>= 0.7, < 0.9)’.

• prereleases (bool) – If True, prereleases are treated like normal releases. The
default behaviour is to not return any prereleases unless they are the only ones which
match the requirement.

Returns A matching instance of Distribution, or None.

4.4.3 Variables

default_locator
This attribute holds a locator which is used by locate() to locate distributions.

4.5 The distlib.index package

4.5.1 Classes

class PackageIndex
This class represents a package index which is compatible with PyPI, the Python Package Index. It allows
you to register projects, upload source and binary distributions (with support for digital signatures), upload
documentation, verify signatures and get a list of hosts which are mirrors for the index.

66 Chapter 4. API Reference

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#bool

Distlib Documentation, Release 0.2.2

Methods:

__init__(url=None, mirror_host=None)

Initialise an instance, setting instance attributes named from the keyword arguments.

Parameters

• url – The root URL for the index. If not specified, the URL for PyPI is used
(‘http://pypi.python.org/pypi‘).

• mirror_host – The DNS name for a host which can be used to determine available
mirror hosts for the index. If not specified, the value ‘last.pypi.python.org’ is used.

register(metadata)
Register a project with the index.

Parameters metadata – A Metadata instance. This should have at least the Name and
Version fields set, and ideally as much metadata as possible about this distribution.
Though it might seem odd to have to specify a version when you are initially registering
a project, this is required by PyPI. You can see this in PyPI’s Web UI when you click the
“Package submission” link in the left-hand side menu.

Returns An urllib HTTP response returned by the index. If an error occurs, an
HTTPError exception will be raised.

upload_file(metadata, filename, signer=None, sign_password=None,
filetype=’sdist’, pyversion=’source’, keystore=None)

Upload a distribution to the index.

Parameters

• metadata – A Metadata instance. This should have at least the Name and
Version fields set, and ideally as much metadata as possible about this distribu-
tion.

• file_name – The path to the file which is to be uploaded.

• signer – If specified, this needs to be a string identifying the GnuPG private key
which is to be used for signing the distribution.

• sign_password – The passphrase which allows access to the private key used for
the signature.

• filetype – The type of the file being uploaded. This would have values such as
sdist (for a source distribution), bdist_wininst for a Windows installer, and
so on. Consult the distutils documentation for the full set of possible values.

• pyversion – The Python version this distribution is compatible with. If it’s a pure-
Python distribution, the value to use would be source - for distributions which are
for specific Python versions, you would use the Python version in the form X.Y.

• keystore – The path to a directory which contains the keys used in signing. If not
specified, the instance’s gpg_home attribute is used instead. This parameter is not
used unless a signer is specified.

Returns An urllib HTTP response returned by the index. If an error occurs, an
HTTPError exception will be raised.

Changed in version 0.1.9: The keystore argument was added.

upload_documentation(metadata, doc_dir)
Upload HTML documentation to the index. The contents of the specified directory tree will be packed
into a .zip file which is then uploaded to the index.

4.5. The distlib.index package 67

http://pypi.python.org/pypi

Distlib Documentation, Release 0.2.2

Parameters

• metadata – A Metadata instance. This should have at least the Name and
Version fields set.

• doc_dir – The path to the root directory for the HTML documentation. This direc-
tory should be the one that contains index.html.

Returns An urllib HTTP response returned by the index. If an error occurs, an
HTTPError exception will be raised.

verify_signature(self, signature_filename, data_filename,
keystore=None)

Verify a digital signature against a downloaded distribution.

Parameters

• signature_filename – The path to the file which contains the digital signature.

• data_filename – The path to the file which was supposedly signed to obtain the
signature in signature_filename.

• keystore – The path to a directory which contains the keys used in verification. If
not specified, the instance’s gpg_home attribute is used instead.

Returns True if the signature can be verified, else False. If an error occurs (e.g. unable to
locate the public key used to verify the signature), a ValueError is raised.

Changed in version 0.1.9: The keystore argument was added.

search(query, operation=None)
Search the index for distributions matching a search query.

Parameters

• query – The query, either as a string or a dictionary. If a string ’foo’ is passed,
it will be treated equivalently to passing the dictionary {’name’: ’foo’}. The
dictionary can have the following keys:

– name

– version

– stable_version

– author

– author_email

– maintainer

– maintainer_email

– home_page

– license

– summary

– description

– keywords

– platform

– download_url

– classifiers (list of classifier strings)

68 Chapter 4. API Reference

Distlib Documentation, Release 0.2.2

– project_url

– docs_url (URL of the pythonhosted.org docs if they’ve been supplied)

• operation – If specified, it should be either ’and’ or ’or’. If not specified,
’and’ is assumed. This is only used if a passed dictionary has multiple keys. It
determines whether the intersection or the union of matches is returned.

Returns

A (possibly empty) list of the distributions matching the query. Each entry in the list will
be a dictionary with the following keys:

• _pypi_ordering – the internal ordering value (an integer)

• name –The name of the distribution

• version – the version of the distribution

• summary – the summary for that version

New in version 0.1.8.

Additional attributes:

username
The username to use when authenticating with the index.

password
The password to use when authenticating with the index.

gpg
The path to the signing and verification program.

gpg_home
The location of the key database for the signing and verification program.

mirrors
The list of hosts which are mirrors for this index.

boundary
The boundary value to use when MIME-encoding requests to be sent to the index. This should be a
byte-string.

4.6 The distlib.util package

4.6.1 Classes

class Cache
This base class implements common operations for distlib caches.

__init__(base)
Initialise a cache instance with a specific directory which holds the cache.

Warning: If base is specified and exists, it should exist and its permissions (relevant on POSIX
only) should be set to 0700 - i.e. only the user of the running process has any rights over the directory.
If this is not done, the application using this functionality may be vulnerable to security breaches as a
result of other processes being able to interfere with the cache.

4.6. The distlib.util package 69

Distlib Documentation, Release 0.2.2

prefix_to_dir(prefix)
Converts a prefix (e.g. the name of a resource’s containing .zip, or a wheel pathname) into a directory
name in the cache. This implementation delegates the work to path_to_cache_dir().

class ExportEntry
Attributes:

A class holding information about a exports entry.

name
The name of the entry.

prefix
The prefix part of the entry. For a callable or data item in a module, this is the name of the package or
module containing the item.

suffix
The suffix part of the entry. For a callable or data item in a module, this is a dotted path which points to
the item in the module.

flags
A list of flags. See Flag formats for more information.

value
The actual value of the entry (a callable or data item in a module, or perhaps just a module). This
is a cached property of the instance, and is determined by calling resolve() with the prefix and
suffix properties.

dist
The distribution which exports this entry. This is normally an instance of InstalledDistribution.

4.6.2 Functions

get_cache_base()
Return the base directory which will hold distlib caches. If the directory does not exist, it is created.

On Windows, if LOCALAPPDATA is defined in the environment, then it is assumed to be a directory, and will
be the parent directory of the result. On POSIX, and on Windows if LOCALAPPDATA is not defined, the user’s
home directory – as determined using os.expanduser(’~’) – will be the parent directory of the result.

The result is just the directory ’.distlib’ in the parent directory as determined above.

If a home directory is unavailable (no such directory, or if it’s write- protected), a parent directory for the cache
is determined using tempfile.mkdtemp(). This returns a directory to which only the running process has
access (permission mask 0700 on POSIX), meaning that the cache should be isolated from possible malicious
interference by other processes.

Note: This cache is used for the following purposes:

•As a place to cache package resources which need to be in the file system, because they are used by
APIs which either expect filesystem paths, or to be able to use OS-level file handles. An example of the
former is the SSLContext.load_verify_locations() method in Python’s ssl module. The
subdirectory resource-cache is used for this purpose.

•As a place to cache shared libraries which are extracted as a result of calling the mount() method of the
Wheel class. The subdirectory dylib-cache is used for this purpose.

The application using this cache functionality, whether through the above mechanisms or through using the
value returned from here directly, is responsible for any cache cleanup that is desired. Note that on Windows,
you may not be able to do cache cleanup if any of the cached files are open (this will generally be the case with

70 Chapter 4. API Reference

http://docs.python.org/library/tempfile.html#tempfile.mkdtemp

Distlib Documentation, Release 0.2.2

shared libraries, i.e. DLLs). The best way to do cache cleanup in this scenario may be on application startup,
before any resources have been cached or wheels mounted.

path_to_cache_dir(path)
Converts a path (e.g. the name of an archive) into a directory name suitable for use in a cache. The following
algorithm is used:

1.On Windows, any ’:’ in the drive is replaced with ’---’.

2.Any occurrence of os.sep is replaced with ’--’.

3.’.cache’ is appended.

get_export_entry(specification)
Return a export entry from a specification, if it matches the expected format, or else None.

Parameters specification (str) – A specification, as documented for the
distlib.scripts.ScriptMaker.make() method.

Returns None if the specification didn’t match the expected form for an entry, or else an instance
of ExportEntry holding information about the entry.

resolve(module_name, dotted_path)
Given a module name and a dotted_path representing an object in that module, resolve the passed pa-
rameters to an object and return that object.

If the module has not already been imported, this function attempts to import it, then access the object repre-
sented by dotted_path in the module’s namespace. If dotted_path is None, the module is returned. If
import or attribute access fails, an ImportError or AttributeError will be raised.

Parameters

• module_name (str) – The name of a Python module or package, e.g. os or
os.path.

• dotted_path (str) – The path of an object expected to be in the module’s namespace,
e.g. ’environ’, ’sep’ or ’path.supports_unicode_filenames’.

4.7 The distlib.wheel package

This package has functionality which allows you to work with wheels (see PEP 427).

4.7.1 Attributes

cache
An instance of distlib.util.Cache. This can be set after module import, but before calling any function-
ality which uses it, to ensure that the cache location is entirely under your control.

If you call the mount method of a Wheel instance, and the wheel is successfully mounted and contains C
extensions, the cache will be needed, and if not set by you, an instance with a default location will be created.
See distlib.util.get_cache_base() for more information.

4.7.2 Classes

class Wheel
This class represents wheels – either existing wheels, or wheels to be built.

4.7. The distlib.wheel package 71

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
https://www.python.org/dev/peps/pep-0427

Distlib Documentation, Release 0.2.2

__init__(spec)
Initialise an instance from a specification.

Parameters spec (str) – This can either be a valid filename for a wheel (for when you want
to work with an existing wheel), or just the name-version-buildver portion of a
wheel’s filename (for when you’re going to build a wheel for a known version and build
of a named project).

build(paths, tags=None, wheel_version=None)
Build a wheel. The name, version and buildver should already have been set correctly.

Parameters

• paths – This should be a dictionary with keys ’prefix’, ’scripts’,
’headers’, ’data’ and one of ’purelib’ or ’platlib’. These must point
to valid paths if they are to be included in the wheel.

• tags – If specified, this should be a dictionary with optional keys ’pyver’, ’abi’
and ’arch’ indicating lists of tags which indicate environments with which the
wheel is compatible.

• wheel_version – If specified, this is written to the wheel’s “Wheel-Version”
metadata. If not specified, the implementation’s latest supported wheel version is
used.

install(self, paths, maker, **kwargs)
Install from a wheel.

Parameters

• paths – This should be a dictionary with keys ’prefix’, ’scripts’,
’headers’, ’data’, ’purelib’ and ’platlib’. These must point to valid
paths to which files may be written if they are in the wheel. Only one of the
’purelib’ and ’platlib’ paths will be used (in the case where they are dif-
ferent), depending on whether the wheel is for a pure-Python distribution.

• maker – This should be set to a suitably configured instance of ScriptMaker. The
source_dir and target_dir arguments can be set to None when creating the
instance - these will be set to appropriate values inside this method.

• warner – If specified, should be a callable that will be called with (soft-
ware_wheel_ver, file_wheel_ver) if they differ. They will both be in the form of
tuples (major_ver, minor_ver).

• lib_only – It’s conceivable that one might want to install only the library portion of
a package – not installing scripts, headers, data and so on. If lib_only is specified
as True, only the site-packages contents will be installed.

is_compatible()
Determine whether this wheel instance is compatible with the running Python.

Returns True if compatible, else False.

is_mountable()
Determine whether this wheel instance is indicated suitable for mounting in its metadata.

Returns True if mountable, else False.

mount(append=False)

Mount the wheel so that its contents can be imported directly, without the need to install the
wheel. If the wheel contains C extensions and has metadata about these extensions, the exten-
sions are also available for import.

72 Chapter 4. API Reference

http://docs.python.org/library/functions.html#str

Distlib Documentation, Release 0.2.2

If the wheel tags indicate it is not compatible with the running Python, a
DistlibException is raised. (The is_compatible() method is used to deter-
mine compatibility.)

If the wheel is indicated as not suitable for mounting, a DistlibException is raised. (The
is_mountable() method is used to determine mountability.)

param append If True, the wheel’s pathname is added to the end of sys.path.
By default, it is added to the beginning.

Note: Wheels may state in their metadata that they are not intended to be mountable, in which
case this method will raise a DistlibException with a suitable message. If C extensions
are extracted, the location for extraction will be under the directory dylib-cache in the
directory returned by get_cache_base().

Wheels may be marked by their publisher as unmountable to indicate that running directly
from a zip is not supported by the packaged software.

unmount()
Unmount the wheel so that its contents can no longer be imported directly. If the wheel contains
C extensions and has metadata about these extensions, the extensions are also made unavailable for
import.

Note: Unmounting does not automatically clean up any extracted C extensions, as that may
not be desired (and not possible, on Windows, because the files will be open). See the
get_cache_base() documentation for suggested cleanup scenarios.

verify()
Verify sizes and hashes of the wheel’s contents against the sizes and hashes declared in the wheel’s
RECORD. Raise a DistlibException if a size or digest mismatch is detected.

New in version 0.1.8.

update(modifier, dest_dir=None, **kwargs)
Allows a user-defined callable access to the contents of a wheel. The callable can modify the con-
tents of the wheel, add new entries or remove entries. The method first extracts the wheel’s contents
to a temporary location, and then calls the modifier like this:

modified = modifier(path_map, **kwargs)

where path_map is a dictionary mapping archive paths to the location of the corresponding ex-
tracted archive entry, and kwargs is whatever was passed to the update method. If the modifier
returns True, a new wheel is built from the (possibly updated) contents of path_map and, as a
final step, copied to the location of the original wheel (hence effectively modifying it in-place). The
passed path_map will contain all of the wheel’s entries other than the RECORD entry (which will
be recreated if a new wheel is built).

New in version 0.1.8.

name
The name of the distribution.

version
The version of the distribution

buildver
The build tag for the distribution.

4.7. The distlib.wheel package 73

Distlib Documentation, Release 0.2.2

pyver
A list of Python versions with which the wheel is compatible. See PEP 427 and PEP 425 for details.

abi
A list of application binary interfaces (ABIs) with which the wheel is compatible. See PEP 427 and PEP
425 for details.

arch
A list of architectures with which the wheel is compatible. See PEP 427 and PEP 425 for details.

dirname
The directory in which a wheel file is found/to be created.

filename
The filename of the wheel (computed from the other attributes)

metadata
The metadata for the distribution in the wheel, as a Metadata instance.

info
The wheel metadata (contents of the WHEEL metadata file) as a dictionary.

exists
Whether the wheel file exists.

New in version 0.1.8.

4.7.3 Functions

is_compatible(wheel, tags=None)
Indicate if a wheel is compatible with a set of tags. If any combination of the tags of wheel is found in tags,
then the wheel is considered to be compatible.

Parameters

• wheel – A Wheel instance or the filename of a wheel.

• tags – A set of tags to check for compatibility. If not specified, it defaults to the set of
tags which are compatible with this Python implementation.

Returns True if compatible, else False.

4.7.4 Attributes

COMPATIBLE_TAGS
A set of (pyver, abi, arch) tags which are compatible with this Python implementation.

4.8 Next steps

You might find it helpful to look at the mailing list.

74 Chapter 4. API Reference

https://www.python.org/dev/peps/pep-0427
https://www.python.org/dev/peps/pep-0425
https://www.python.org/dev/peps/pep-0427
https://www.python.org/dev/peps/pep-0425
https://www.python.org/dev/peps/pep-0425
https://www.python.org/dev/peps/pep-0427
https://www.python.org/dev/peps/pep-0425
http://mail.python.org/mailman/listinfo/distutils-sig/

CHAPTER 5

Migrating from older APIs

This section has information on migrating from older APIs.

5.1 The pkg_resources resource API

5.1.1 Basic resource access

resource_exists(package, resource_name) finder(package).find(resource_name) is
not None

resource_stream(package, resource_name) finder(package).find(resource_name).as_stream()

resource_string(package, resource_name) finder(package).find(resource_name).bytes

resource_isdir(package, resource_name) finder(package).find(resource_name).is_container

resource_listdir(package, resource_name) finder(package).find(resource_name).resources

5.1.2 Resource extraction

resource_filename(package, resource_name) finder(package).find(resource_name).file_path

set_extraction_path(extraction_path) This has no direct analogue, but you can achieve equivalent
results by doing something like the following:

from distlib import resources

resources.cache = resources.Cache(extraction_path)

before accessing the file_path property of any Resource. Note that if you have accessed the file_path
property for a resource before doing this, the cache may already have extracted files.

cleanup_resources(force=False) This is not actually implemented in pkg_resources – it’s a no-op.
You could achieve the analogous result using:

from distlib import resources

not_removed = resources.cache.clear()

75

Distlib Documentation, Release 0.2.2

5.1.3 Provider interface

You can provide an XXXResourceFinder class which finds resources in custom storage containers, and works like
ResourceFinder. Although it shouldn’t be necessary, you could also return a subclass of Resource from your
finders, to deal with custom requirements which aren’t catered for.

get_cache_path(archive_name, names=()) There’s no analogue for this, as you shouldn’t need to care
about whether particular resources are implemented in archives or not. If you need this API, please give feedback
with more information about your use cases.

extraction_error() There’s no analogue for this. The Cache.get() method, which writes a resource’s
bytes to a file in the cache, will raise any exception caused by underlying I/O. If you need to handle this in the
cache layer, you can subclass Cache and override get(). If that doesn’t work for you, please give feedback
with more information about your use cases.

postprocess(tempname, filename) There’s no analogue for this. The Cache.get() method, which
writes a resource’s bytes to a file in the cache, can be overridden to perform any custom post-processing. If that
doesn’t work for you, please give feedback with more information about your use cases.

5.2 The pkg_resources entry point API

Entry points in pkg_resources are equivalent to per-distribution exports dictionary (see Exporting things from
Distributions). The keys to the dictionary are just names in a hierarchical namespace delineated with periods (like
Python packages). These keys are called groups in pkg_resources documentation, though that term is a little
ambiguous. In Eclipse, for example, they are called extension point IDs, which is a little closer to the intended usage,
but a bit of a mouthful. In distlib, we’ll use the term category or export category.

In distlib, the implementation of exports is slightly different from entry points of pkg_resources. A
Distribution instance has an exports attribute, which is a dictionary keyed by category and whose values
are dictionaries that map names to ExportEntry instances.

Below are the pkg_resources functions and how to achieve the equivalent in distlib. In cases where the
pkg_resources functions take distribution names, in distlib you get the corresponding Distribution in-
stance, using:

dist = dist_path.get_distribution(distname)

and then ask that instance (or the dist_path instance) for the things you need.

load_entry_point(distname, groupname, name) dist.exports[groupname][name].value

get_entry_info(distname, groupname, name) dist.exports[groupname][name]

get_entry_map(distname, groupname=None) dist.exports or dist.exports[groupname]

iter_entry_points(groupname, name=None) dist_path.get_exported_entries(groupname,
name=None)

76 Chapter 5. Migrating from older APIs

Index

Symbols
__init__() (AggregatingLocator method), 65
__init__() (Cache method), 69
__init__() (DependencyFinder method), 65
__init__() (DirectoryLocator method), 64
__init__() (DistPathLocator method), 65
__init__() (DistributionPath method), 55
__init__() (Locator method), 63
__init__() (PackageIndex method), 67
__init__() (PyPIJSONLocator method), 64
__init__() (PyPIRPCLocator method), 64
__init__() (ResourceCache method), 61
__init__() (ResourceFinder method), 60
__init__() (ScriptMaker method), 61
__init__() (SimpleScrapingLocator method), 64
__init__() (Wheel method), 71

A
abi (Wheel attribute), 74
add_distribution() (DependencyGraph method), 58
add_edge() (DependencyGraph method), 58
add_launchers (ScriptMaker attribute), 61
add_missing() (DependencyGraph method), 58
adjacency_list (DependencyGraph attribute), 58
AggregatingLocator (class in distlib.locators), 65
APIs

database, 8
locators, 11
manifest, 36
metadata, 19
package resources, 20
PyPI, 12
script installation, 23
version, 25
wheel, 27

arch (Wheel attribute), 74
as_stream() (Resource method), 60

B
boundary (PackageIndex attribute), 69

build() (Wheel method), 72
building

wheels, 27
buildver (Wheel attribute), 73
bytes (Resource attribute), 59

C
Cache (class in distlib.util), 69
cache (in module distlib.resources), 58
cache (in module distlib.util), 71
check_installed_files() (InstalledDistribution method), 57
clear_cache() (DistributionPath method), 55
COMPATIBLE_TAGS (in module distlib.util), 74
Continuous integration status

distlib, 7
convert_url_to_download_info() (Locator method), 63
Coverage status

distlib, 7

D
default_locator (in module distlib.locators), 66
DependencyFinder (class in distlib.locators), 65
DependencyGraph (built-in class), 58
digest (Distribution attribute), 56
digests (Distribution attribute), 56
DirectoryLocator (class in distlib.locators), 64
dirname (Wheel attribute), 74
disable_cache() (DistributionPath method), 55
dist (ExportEntry attribute), 70
DistPathLocator (class in distlib.locators), 65
Distribution (built-in class), 56
DistributionPath (built-in class), 55
download_url (Distribution attribute), 56
download_urls (Distribution attribute), 56

E
EggInfoDistribution (built-in class), 57
enable_cache() (DistributionPath method), 55
Environment markers

evaluating, 20

77

Distlib Documentation, Release 0.2.2

overriding, 20
exists (Wheel attribute), 74
ExportEntry (class in distlib.util), 70
exports (InstalledDistribution attribute), 56

F
file_path (Resource attribute), 59
filename (Wheel attribute), 74
find() (DependencyFinder method), 65
find() (ResourceFinder method), 60
finder() (in module distlib.resources), 59
flags (ExportEntry attribute), 70
force (ScriptMaker attribute), 61

G
get() (ResourceCache method), 61
get_all_distribution_names() (in module distlib.locators),

66
get_bytes() (ResourceFinder method), 60
get_cache_base() (in module distlib.util), 70
get_distribution() (DistributionPath method), 55
get_distribution_names() (Locator method), 63
get_distributions() (DistributionPath method), 55
get_export_entry() (in module distlib.util), 71
get_exported_entries() (DistributionPath method), 56
get_project() (Locator method), 63
get_project() (PyPIJSONLocator method), 64
get_project() (PyPIRPCLocator method), 64
get_size() (ResourceFinder method), 60
get_stream() (ResourceFinder method), 60
gpg (PackageIndex attribute), 69
gpg_home (PackageIndex attribute), 69

I
info (Wheel attribute), 74
install() (Wheel method), 72
Installation

distlib, 7
InstalledDistribution (built-in class), 56
installing

wheels, 28
is_compatible() (in module distlib.util), 74
is_compatible() (Wheel method), 72
is_container (Resource attribute), 59
is_container() (ResourceFinder method), 60
is_mountable() (Wheel method), 72
is_stale() (ResourceCache method), 61
iterator() (ResourceFinder method), 60

L
list_distinfo_files() (InstalledDistribution method), 57
list_installed_files() (EggInfoDistribution method), 58
list_installed_files() (InstalledDistribution method), 57

locate() (in module distlib.locators), 66
locate() (Locator method), 63
Locator (class in distlib.locators), 63
locator (Distribution attribute), 56

M
make() (ScriptMaker method), 62
make_multiple() (ScriptMaker method), 62
Manifest

excluding files, 37
excluding files globally, 37
excluding files recursively, 38
grafting directories, 38
including files, 37
including files globally, 37
including files recursively, 37
pruning directories, 38

Markers
evaluating, 20
overriding, 20

metadata (Distribution attribute), 56
metadata (EggInfoDistribution attribute), 58
metadata (Wheel attribute), 74
mirrors (PackageIndex attribute), 69
missing (DependencyGraph attribute), 58
modifying

wheels, 29
mount() (Wheel method), 72

N
name (Distribution attribute), 56
name (EggInfoDistribution attribute), 58
name (ExportEntry attribute), 70
name (Wheel attribute), 73

P
Package resources

in .zip files, 21
in the file system, 21

PackageIndex (class in distlib.index), 66
password (PackageIndex attribute), 69
path (Resource attribute), 59
path_to_cache_dir() (in module distlib.util), 71
prefix (ExportEntry attribute), 70
prefix_to_dir() (Cache method), 69
PyPIJSONLocator (class in distlib.locators), 64
PyPIRPCLocator (class in distlib.locators), 64
Python Enhancement Proposals

PEP 241, 4, 8, 19
PEP 302, 44, 59
PEP 314, 4, 8, 19
PEP 345, 4, 8, 19
PEP 370, 25
PEP 376, 4, 8

78 Index

Distlib Documentation, Release 0.2.2

PEP 386, 8, 49
PEP 397, 23
PEP 425, 74
PEP 426, 4, 8, 10, 19, 20, 25, 47, 48
PEP 427, 4, 27, 52, 71, 74
PEP 440, 4, 8, 19, 49

pyver (Wheel attribute), 73

R
read_exports() (InstalledDistribution method), 57
register() (PackageIndex method), 67
register_finder() (in module distlib.resources), 59
repr_node() (DependencyGraph method), 58
requested (InstalledDistribution attribute), 56
resolve() (in module distlib.util), 71
Resource (class in distlib.resources), 59
ResourceCache (class in distlib.resources), 61
ResourceFinder (class in distlib.resources), 60
Resources

in .zip files, 21
in the file system, 21

resources (Resource attribute), 59
reverse_list (DependencyGraph attribute), 58

S
script_template (ScriptMaker attribute), 61
ScriptMaker (class in distlib.scripts), 61
Scripts

avoid overwriting, 25
generating variants, 25
installing, 23
specifying custom executables, 25
specifying what to install, 23
windowed, 25
wrapping callables, 24

search() (PackageIndex method), 68
set_mode (ScriptMaker attribute), 61
SimpleScrapingLocator (class in distlib.locators), 64
size (Resource attribute), 59
source_dir (ScriptMaker attribute), 61
suffix (ExportEntry attribute), 70

T
target_dir (ScriptMaker attribute), 61
Testing

distlib, 7
Tests

speeding up, 8
Tutorial, 7

U
unmount() (Wheel method), 73
update() (Wheel method), 73

upload_documentation() (PackageIndex method), 67
username (PackageIndex attribute), 69

V
value (ExportEntry attribute), 70
verify() (Wheel method), 73
verifying

wheels, 29
version (Distribution attribute), 56
version (EggInfoDistribution attribute), 58
version (Wheel attribute), 73
Versions

matching, 26
overview, 25

W
Wheel (class in distlib.util), 71
wheels

building, 27
custom tags when building, 27
installing, 28
modifying, 29
mounting, 30
verifying, 29

write_exports() (InstalledDistribution method), 57

Z
ZipResourceFinder (class in distlib.resources), 61

Index 79

	Overview
	Distlib evolved out of packaging
	What was the problem with packaging?
	How Distlib can help
	How you can help
	Main features
	Python version and platform compatibility
	Project status
	Next steps

	Tutorial
	Installation
	Testing
	PYPI availability

	First steps
	Using the database API
	Distribution paths
	Querying a path for distributions
	Including legacy distributions in the search results
	Distribution properties
	Exporting things from Distributions

	Distribution dependencies
	Using the locators API
	Overview
	Under the hood

	Using the index API
	Overview
	Registering a project
	Uploading a source distribution
	Uploading binary distributions
	Signing a distribution
	Downloading files
	Verifying signatures
	Uploading documentation
	Authentication
	Verifying HTTPS connections
	Saving a default configuration
	Searching PyPI

	Using the metadata and markers APIs
	Instantiating metadata
	Reading metadata from files and streams
	Writing metadata to paths and streams
	Using markers

	Using the resource API
	Access to resources in the file system
	Access to resources in the .zip files
	Iterating over resources

	Using the scripts API
	Specifying scripts to install
	Wrapping callables with scripts
	Specifying a custom executable for shebangs
	Generating variants of a script
	Avoiding overwriting existing scripts
	Generating windowed scripts on Windows

	Using the version API
	Overview
	Matching versions against constraints

	Using the wheel API
	Building wheels
	Customising tags during build
	Specifying a wheel's version
	Installing from wheels
	Verifying wheels
	Modifying wheels
	Mounting wheels
	Using vanilla pip to build wheels for existing distributions on PyPI

	Using the manifest API
	The include directive
	The exclude directive
	The global-include directive
	The global-exclude directive
	The recursive-include directive
	The recursive-exclude directive
	The graft directive
	The prune directive

	Next steps

	Distlib's design
	The locators API
	The problem we're trying to solve
	A minimal solution
	Locating distributions
	Finding dependencies

	The index API
	The problem we're trying to solve
	A minimal solution

	The resources API
	The problem we're trying to solve
	A minimal solution
	Dealing with the requirement for access via file system files

	The scripts API
	The problem we're trying to solve
	A minimal solution
	Flag formats

	The version API
	The problem we're trying to solve
	A minimal solution
	Versions
	Matchers
	Version schemes

	The wheel API
	The problem we're trying to solve
	A minimal solution

	Next steps

	API Reference
	The distlib.database package
	Classes

	The distlib.resources package
	Attributes
	Functions
	Classes

	The distlib.scripts package
	Classes

	The distlib.locators package
	Classes
	Functions
	Variables

	The distlib.index package
	Classes

	The distlib.util package
	Classes
	Functions

	The distlib.wheel package
	Attributes
	Classes
	Functions
	Attributes

	Next steps

	Migrating from older APIs
	The pkg_resources resource API
	Basic resource access
	Resource extraction
	Provider interface

	The pkg_resources entry point API

